Guiding Recovery of Stratospheric Ozone

- Monitoring and Understanding Trends in Surface Radiation, Clouds, and Aerosols
- Tracking Greenhouse Gases and Understanding Carbon Cycle Feedbacks
- Renewable Energy Support
- Climate Intervention
- Standards
- Observatories
- Air Quality
- Arctic Processes
- Radiative Forcing
- Climate Sensitivity
Guiding Recovery of Stratospheric Ozone at GMD

GMD plays a central role in the global effort to monitor stratospheric ozone, ozone-depleting gases, and other processes affecting stratospheric ozone

Our focus:

– *global-to-regional scale observations* to assess global changes and influences from specific processes and regions (e.g., U.S.)

– *Diagnosing observed changes* to clarify the relative influence of policy decisions, other human behaviors, and natural processes

– *To provide the highest-quality, policy-relevant science*

→ Guiding the recovery of the ozone layer by informing Parties to the Montreal Protocol on the progress of recovery
Stratospheric ozone depletion

→ a threat to life on Earth.

1950s: - NOAA begins measuring total column ozone
1970s: - Theory suggesting CFCs will deplete ozone
 - NOAA and NASA begin measuring CFCs
1980s: - Severe ozone depletion reported in Antarctica
 - Montreal Protocol controls CFC production
 - Antarctic ozone hole attributed to CFCs and other chemicals
1990s: - US Clean Air Act Amended:
 NOAA and NASA to monitor:
 tropospheric chlorine & bromine, & stratospheric ozone depletion
 to project:
 peak chlorine
 the rate of chlorine decline after 2000
 the date when chlorine returns to two ppb

* 1996: tropospheric chlorine peaks (NOAA-GMD publication)
* 2003: tropospheric bromine peaks (NOAA-GMD publication)
Guiding Recovery of Stratospheric Ozone at GMD

A) Measuring chemicals that cause stratospheric ozone depletion
 ➞ One of two global networks tracking long-term changes in ozone-depleting gases

B) Measuring long-term changes in stratospheric ozone
 ➞ Providing reference-quality long-term measurements of stratospheric ozone

C) Advancing scientific understanding
 ➞ Understanding causes of atmospheric composition change
 and improving our understanding of atmospheric processes

D) Communicating results to a broader audience\footnote{stakeholders}
 ➞ through simple indices, web presence, open data policies, publications,
 and by contributing to national and international Scientific Assessments
A) Measuring chemicals that cause stratospheric ozone depletion

- ~ 40 chemicals measured
- Multiple techniques
- Data records up to 40 years long updated regularly on web
- Addressing global and U.S.-centric issues
A) Measuring chemicals that deplete stratospheric ozone

- Concentrations of ozone-depleting chemicals for which PRODUCTION IS CONTROLLED by the Montreal Protocol

All major ozone-depleting gases are measured at NOAA/GMD.

Emphasis is on high precision and accuracy.

→ the better the measurement, the more one can learn...

See talks by S. Montzka, and by P. Yu

Recent related pubs: Montzka et al., 2015; 2018; Rigby et al., 2017
A) Measuring chemicals that deplete stratospheric ozone

Concentrations of halogenated chemicals NOT CONTROLLED by the Montreal Protocol, but that can influence stratospheric ozone:

- Shorter-lived gases also add chlorine and bromine to the atmosphere.
 \(\rightarrow \) having human and natural sources.
 \(\rightarrow \) changing over time?

Also: \(\text{N}_2\text{O}, \text{COS} \)

Recent related pubs: Hossaini et al., 2016; 2017

See poster by G. Dutton
A) Measuring chemicals that deplete stratospheric ozone

- Changes in “controlled” tropospheric chlorine and bromine:

Decline in total Chlorine

Decline in total Bromine

Science 1996; Nature 1999

GRL 2003

→ Sum of all controlled gases measured at GMD
→ directly addressing Congressional mandate
→ updated annually on NOAA web page:
A) Measuring chemicals that deplete stratospheric ozone

- Distilling GMD measurements of controlled gases into a single index:

The Ozone Depleting Gas Index

Measuring progress in the decline of ozone-depleting halogen back to 1980 concentrations (pre-ozone hole)

In 2017:
• Antarctic ODGI was 80
• Mid-latitude ODGI was 56

Annually updated at http://www.esrl.noaa.gov/gmd/aggi/
A) Measuring substitute Hydrofluorocarbons

– Concentrations of chemicals for which PRODUCTION IS CONTROLLED by the Montreal Protocol, but that do NOT deplete ozone

Recently added to the Montreal Protocol list of controlled substances.

These results enable a tracking of radiative forcing from ODS substitution.

Most substitute HFCs are measured at NOAA/GMD.
B) Measuring long-term changes in stratospheric ozone

→ Providing reference-quality long-term measurements of stratospheric ozone

Using a range of techniques to obtain:

Ozone total column density:
- Dobson
- Brewer

Ozone concentration vertical profile:
- Ozone Sondes (highest vertical resolution)
- Umkehr

Ozone concentrations near Earth's surface

To allow an understanding of ozone concentration changes:

over time
- developing and applying statistical models to provide trend estimates

as a function of altitude
- stratospheric changes (upper vs lower stratosphere)
- tropospheric changes (pollution-related or transported from stratosphere)

as a function of latitude
- future ozone changes are expected to be latitude-dependent
 aerosol, GHGs, circulation...
B) Measuring long-term changes in stratospheric ozone

NOAA-GMD Dobson ozone program:
- Forms a global backbone of robust, calibrated total column ozone data
- Provides an essential reference for other ozone measurements (satellites, other Dobsons, etc.) through calibration transfers
- Maintains the WMO reference Dobson instrument (#D083)

NOAA-GMD ozone sonde program:
- adds high vertical resolution (data were recently homogenized)
- Strengthens and augments the SHADOZ program for tropical ozone data

B) Measuring long-term changes in stratospheric ozone

− To allow an understanding of ozone column changes by latitude (ODS+GHG+transport)

See posters by G. McConville, K. Miyagawa
B) Measuring long-term changes in stratospheric ozone

- To allow an understanding of ozone column changes by altitude (ODS+GHG+transport)

LOTUS 2018 and Ozone Assessment 2018 used GMD data and developed statistical models to derive trends in ozone profiles and total column.
B) Measuring long-term changes in stratospheric ozone

To allow an understanding of ozone column changes by altitude (ODS+GHG+transport)

Is ozone in lower stratosphere still decreasing? Ball et al (2018) analyses are based on satellite records

Homogenization for GMD (Sterling et al, 2018) and SHADOZ (Witte et al, 2017) ozonesonde data - improved records for future trend analyses

SHADOZ Sites: https://tropo.gsfc.nasa.gov/shadoz

Oral presentation by Witte

Trends in the low stratosphere will be soon assessed from homogenized ozone-sonde data in tropics and middle latitudes.
B) Measuring long-term changes in stratospheric ozone

- Ozone, vertical profiles from ozone sondes on balloons

Pre-1971 (pre ozone-hole)
Ozone-hole conditions
Focus on depleted layer:

See talk by B. Johnson, poster by P. Cullis

Recent related pubs: Solomon et al. 2016 – ozone-sonde detected recovery, observed in September. Hofmann(2010)? Recovery after the September depletion rate is less than 2.7 DU/day
C) Advancing scientific understanding (Q3 & Q4 in New Research Plan)

- Understanding the cause of atmospheric composition changes
- Sources, sinks, and transport

Improving our understanding of trace-gas sources and sinks

Sinks: Measuring the atmospheric oxidation capacity over time

→ *budget analyses of long-lived gases*

The exponential decline in CH$_3$CCl$_3$

- NH
- SH

Inferred [OH] inter-annual changes

- CH$_3$CCl$_3$
- CH$_4$ (constant emissions)
- CH$_4$ (varying emissions)

Science 2000; Science 2011; PNAS 2017
C) Advancing scientific understanding (Q3 & Q4 in New Research Plan)

→ Understanding the cause of atmospheric composition changes
→ Sources, sinks, and transport

Improving our understanding of trace-gas sources and sinks

Sinks: Measuring the atmospheric oxidation capacity over time
→ budget analyses of long-lived gases

Alternative approaches to CH$_3$CCl$_3$:

* Deriving OH loss from consideration of hemispheric mole-fraction differences

Long-lived gases
(Liang et al., 2017)

Short-lived gases
From network and special projects (e.g., Atom)
C) Advancing scientific understanding (Q3 & Q4 in New Research Plan)

- Understanding the cause of atmospheric composition changes
 - sources, sinks, and transport

Improving our understanding of trace-gas sources and sinks

Sources, particularly U.S. contributions, but also on a global scale

Why are CCl₄ emissions continuing now that CFC production is negligible?

SPARC Report focus in 2016

What we found:
US emissions are 10% of global total
* associated with chemical industry
* this process likely accounts for much of the remaining global emissions

(Hu et al., 2016)

Other similar findings related to CFC-11 will be discussed in meeting
C) Advancing scientific understanding (Q3 & Q4 in Research Plan)

- Understanding the cause of atmospheric composition changes
- Sources, sinks, and transport

Improving our understanding of trace-gas sources and sinks

Surface measurements are influenced by variations in sources and sinks:

![Graph showing CFC-11 emission and reported production from 1995 to 2015.](image)

Note: The diagram illustrates the production and emission of CFC-11 in the Northern and Southern Hemispheres, highlighting the troposphere and stratosphere.
D) Communicating results

• **Providing expertise** to national and international Assessments on Ozone and Climate:
 – **GMD scientists** have been lead authors, co-authors, contributing authors, and contributors to these Assessments
 – **GMD data** are prominent in these Assessments

Also:
• UNEP/WMO, 2018 Scientific Assessment of Ozone Depletion—lead authors
• UNEP/WMO, Twenty questions and answers about the ozone layer, 2015
Guiding ozone layer recovery in the future at GMD:

• **Continue ongoing programs to:**
 – Monitor effectiveness of the Montreal Protocol for diminishing ozone-depleting gases
 – Accurately measure the response of stratospheric ozone to decreasing halogen and increasing greenhouse gas concentrations

• **Especially to address newly emerging issues:**
 – increases in CFC-11, CH₂Cl₂, & CH₃Br; and in future for VSLS-bromine?
 – HFCs and Kigali Amendment – locking in climate gains from the Montreal Protocol
 – lower stratospheric ozone declines (Ball et al. 2018)? Assess better-positioned GMD measurements (Unkehr; ozone-sonde)

• **Add capabilities where possible:**
 – increased sampling frequency in tropics
 – validation of new instruments (*i.e.* Pandora)
 – validation of new operational NOAA satellite products (*i.e.*, IPSS)

• **Participate in periodic field campaigns to:**
 – extend an understanding of surface-based results vertically
 – improve process-based understanding of the atmosphere
 – gauge the atmospheric response to increasing greenhouse gas concentrations
Guiding Recovery of Stratospheric Ozone at GMD

GMD plays a central role in the global effort to monitor stratospheric ozone, ozone-depleting gases, and other processes affecting stratospheric ozone

Our focus:

- **global-to-regional scale observations** to assess global changes and influences from specific processes and regions (e.g., U.S.)
- **Diagnosing observed changes** to clarify the relative influence of policy decisions, other human behaviors, and natural processes
- **To provide the highest-quality, policy-relevant science**

→ Guiding the recovery of the ozone layer by informing Parties to the Montreal Protocol on the progress of recovery