¹⁴C-based emission estimates for halocarbons and other greenhouse gases across the U.S.

S.A. Montzka¹, J.B. Miller^{1,2}, S. Lehman³, A.E. Andrews¹, C. Sweeney^{1,2}, B.R. Miller^{1,2}, H. Chen¹, L. Hu¹, C. Wolak³, E.J. Dlugokencky¹, J.R. Southon⁴, J.C. Turnbull⁵, B.W. LaFranchi⁶, T.P. Guilderson⁶, M.L Fischer⁷, P.P Tans¹

1. ESRL, NOAA, Boulder, USA; 2. CIRES, U of Colorado, Boulder, USA; 3. INSTAAR, U of Colorado, Boulder, USA; 4. Earth System Science, U of California, Irvine, USA; 5. GNS, Lower Hutt, New Zealand; 6. LLNL, Livermore, USA; 7. LBNL, Berkeley, USA

The problem:

• U.S. emissions of greenhouse gases and ozone-depleting substances are derived almost entirely from inventories.

 Inventories are based on many unchecked assumptions and can be grossly in error.

 GMD's capabilities allow us to independently estimate emissions on continental scales.

Our approach:

 Measure co-variations between trace gases and ¹⁴CO₂ in polluted air at selected North-American sites.

 Use ¹⁴CO₂ to derive the recent fossil-fuel contribution in each sample.

 Derive trace gas emissions from the observed co-variations and inventory-based U.S. fossilfuel emissions.

General approach for estimating regional emissions:

Emissions(X₁) = $\Delta X_1 / \Delta X_2 \times \text{Emissions}(X_2)$

 ΔX

Methodology background:

15) Tel P h (TN ulation 0.7 1.5 2.2 2.9 3.6 4.4 5.1 5.8 6.5 7.3 Δ^{14} C (per mil) C_{ff} (ppm) \rightarrow nuclear power and respiration influences are small \rightarrow figures here are scaled according to mass balance relation of -2.7%/ppm CO₂ MWO wgc bao \rightarrow see Miller *et al.*, 2012. measurements during 2010: **Example observations** at WKT (red points) Mixing Ratio Enhancements 130 HFC-134a vs. C_{ff} at WKT (2010) **∆X₁** ∆134a summer⁄ 80 C_{ff} (ppm) Blue = NWR $C_{\rm ff} = (\Delta^{14}C_{\rm obs} - \Delta^{14}C_{\rm bkgd}) / -2.7$ + respiration term* background Where 1 ppm C_{ff} (ppm) $\rightarrow -2.7\%$ 2010 2010.25 2010.5 2010.75 2011 Year * from respiration of "bomb CO₂" back to the atmosphere (typically < 0.8 ppm)

Across North America the distribution of $C_{\rm ff}$ dominates the $\Delta^{14}CO_2$ signal * In practice, measurement precision allows determination of $C_{\rm ff}$ within ± 1 ppm **2)** Deriving ΔX_1 and C_{ff} from air sample

Acknowledgements:

* Collaborators involved with air sampling, analysis and standardization; modeling; and program management: C. Siso, P. Lang, K. Sours, D. Neff, J. Kofler, J. Williams, J. Higgs, S. Wolter, L. Bruhwiler, P. Novelli, T. Conway, B. Hall, J. Elkins, and J.H. Butler. * Funding from The Atmospheric Composition and Climate Program and the Carbon Cycle Program of NOAA's Climate Program Office. U.S. Dept of Energy, California Air Resources Board.

 ΔX_1 = concentration enhancement above background for trace gas X₁ ossil-fuel CO_2 (C_{ff}) concentration derived from measurements of ¹⁴CO₂

<u>Emissions(X₂)</u> = $C_{\rm ff}$, are known with high relative accuracy from the Vulcan fossil fuel inventory (Gurney *et al.*, 2009)

 $\Delta^{14}CO_2$ is an excellent proxy for C_{ff}

Inventory from Gurney, K.R., et al. (2009)

All year (grey); Summer (red); Winter (blue)

Apparent emission ratios ($\Delta X vs. C_{ff}$) vary by region and season in ways that are intuitively reasonable. For example: Ratios to C_{ff} in the <u>UPPER</u> panel show:

* Refrigerant fluids (HCFC-22 and HFC-134a) show expected seasonality. * Insulation foam blowing agent (HCFC-142b) is enhanced at northerly sites. *Ratios to C_{ff} in the <u>LOWER</u> panel show:* * Methane shows a rather unique pattern.

* SF₆ is highest in the North-Eastern U.S.

4a) Site-specific C_{ff} emissions are derived from convolving:

0.001

0.002

Fossil-fuel emissions

Site sensitivity to emissions

0.005 0.010 0.020 0.050 0.100 Surface Sensitivity [ppm/(μmol m⁻²s⁻¹)] STILT Lagrangian trajectory model and WRF winds (10 km res)

- Chemical CO SF₆ G HFC-134a HCFC-22 CH_4 N_2O Region/ # of sites> * As repoi Next steps:

4b) Site-specific emissions derived for HFC-134a for 2010:

 \rightarrow Covariations in apparent emission ratios and C_{ff} can cause substantial errors if the calculation is done on an annual basis (*e.g.*, 58 vs 65 Gg/yr for HFC-134a here)

Annual national emissions (preliminary estimates):

	Miller <i>et al.*</i> 2006-2009	this work** 2010	EPA * 2005-2009	EDGAR * 2005-2009 (this work CO ₂ -eq (GtC)
g yr ⁻¹	41 (16-73)	48	77	62	
Sg yr ⁻¹	1.4 (0.7-3.0)	0.9	0.7	1.8	0.006
a "	46 (10-86)	65	55	70	0.024
"	66 (19-138)	87	85		0.042
g yr⁻¹	39 (18-69)	41	32	26	0.280
g yr ⁻¹	1.7 (0.7-3.6)	1.8	1.0	1.0	0.146
				sum>	> 0.50
>>	cma&nha	nine	All US	All US	
rted in Miller <i>et al</i> . (2012), from aircraft sites NHA & CMA (N&C) only.					

** Scaled to total US C_{ff} emission of 1.6 PgC yr¹

Conclusions

From atmospheric measurements of chemicals affecting climate, ozone, and air quality at nine U.S. sites during 2010 *and* ¹⁴CO₂:

* Fairly high correlations are observed between pollution-related concentration enhancements above background for these chemicals and fossil-fuel CO_2 .

Emissions on regional and national scales are **derived** based on these co-variations with consideration of the US C_{ff} inventory. * Regional emissions show substantial variations across regions and seasons that

need characterization for an accurate evaluation of inventory estimates.

* maintain & expand observational network to improve coverage * continue to improve methodology by:

- refining respiration influences on C_{ff} estimation

- improving background determination
- defining robust uncertainties

assess our new methodology by comparing with other techniques (*e.g.*, correlations to CO; regional modeling approaches using the broader suite of available data.