Trace Gas Observations from Small Research Aircraft over the Mid Atlantic States and Hebei, China

Russell R. Dickerson et al.
The University of Maryland
NOAA ESRL Global Monitoring 22 May 2019
Outline

Methods evaluation.
Greenhouse gases in Baltimore/Washington area & Marcellus upwind.
Preliminary results form New York City.
Results for CFCs over Hebei, China.
UMD Cessna 402B Research Aircraft

Heavy lifting: Xinrong Ren

- **GPS Position** (Lat, Long, Altitude)
- **Met** (T, RH, P, wind speed/direction)
- **Trace gases:**
 - O_3: UV Absorption, modified TECO
 - SO_2: Pulsed Fluorescence, modified TECO
 - $CH_4/CO_2/CO/H_2O$: Cavity Ringdown, Picarro
 - NO_2: Cavity Ring Down, Los Gatos
 - NO: Chemiluminescence, modified TECO
 - HCHO: Fluorescence, NASA
 - VOCs: whole air samples

- **Aerosol Optical Properties:**
 - Scattering: b_{scat} (@450, 550, 700 nm), Nephelometer
 - Absorption: b_{ap} (565 nm), PSAP
 - Black Carbon: Aethalometer (370-950 nm)
What’s our precision? Cessna Test Flight on 2/14/2019

Objectives: Picarro & wind calibration.

Longitude (°)	Latitude (°)	Altitude (ft)	Cessna WS (m/s)
-77 | 38.4 | 0 | 0
-76.5 | 38.5 | 1000 | 2
-76 | 38.6 | 2000 | 4

Longitude (°)	Cessna WS (m/s)
-77 | 6
-76.5 | 8
-76 | 10
Feed the Picarro analyzer compressed air with constant $[CO_2]$, $[CH_4]$, and $[CO]$.

Main Sample Line (~10 L/min)

Breathing Air

~ 1.0 L/min

~ 0.4 L/min

Filter

Pump

Picarro G2401-m

$CO_2/CH_4/CO/H_2O$ Analyzer

NIST support
Picarro GHG Measurement Altitude Test (1-sec data ± σ)

\[
\text{[CO}_2\text{]} = 517.19 \pm 0.03 \text{ ppm}
\]

\[
\text{[CH}_4\text{]} = 2529.3 \pm 0.3 \text{ ppb}
\]

\[
\text{[CO]} = 472.8 \pm 4.3 \text{ ppb}
\]
Picarro GHG Measurement Altitude Test
From 8000 ft. (2.4km) to ground before landing

\[
\begin{align*}
\text{[CO}_2\text{]} &= 517.20 \pm 0.03 \text{ ppm} \\
\text{[CH}_4\text{]} &= 2529.5 \pm 0.3 \text{ ppb} \\
\text{[CO]} &= 472.2 \pm 4.2 \text{ ppb}
\end{align*}
\]
We replaced a bad wind system.
Measurements from UMD Cessna over a Profiler
Published results so far, methane.

- CH$_4$ emissions from Baltimore-Washington area 8.66 ± 4.17 kg/s (2015) and 9.14 ± 4.49 kg/s (2016) or about 0.28 Tg/yr (Ren et al. JGR 2018). Compare to 0.84 Tg/yr for 5 cities (Plant et al. later today).

- CH$_4$ emissions from SW Marcellus 21.2 kg/s (0.66Tg/yr); 28% from O&NG (Ren et al. JGR 2019).

- CH$_4$ emissions from SW Marcellus ~0.5% of production; ratioing to C$_2$H$_6$ (Barkley et al. GRL 2019).

- Methane leak rates <1% of NG production, but total emissions much higher than inventories.
Published & submitted results so far, CO₂

- Aircraft mass balance emissions fossil CO₂ = 2.3±0.5 TgC/mo in Baltimore-Washington in February 2015 based on 7 aircraft flights.
- 4 bottom-up inventories suggest fossil 2.2±0.3 TgC/mo. (Ahn et al., in prep 2019).
- Model inversion total CO₂ = 2.5±0.7 TgC (Lopez-Coto et al. submitted 2019).
Correlation among CO, CO$_2$ and CH$_4$ over NYC

Afternoon Flight on May 18, 2017

Observed CO and CO$_2$, CH$_4$ and CO$_2$ as well as CH$_4$ and CO are well correlated.

CO and CO$_2$ emissions look good, but CH$_4$ emissions may be underestimated by a factor of 2-3.
Air Chemistry Research in Asia (ARIAs)

- Peking University, Beijing Normal University, Hebei Provincial weather service, and University of Maryland
- NSF funded
- May-June 2016 in Hebei Province
- 11 research flights, ~3 hours each
- Purpose: Lagrangian study of trace gases and aerosols; complement to NASA KORUS-AQ
<table>
<thead>
<tr>
<th></th>
<th>Background<sup>a,b</sup></th>
<th>ARIAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pptv</td>
<td>Mean (Median), pptv</td>
</tr>
<tr>
<td>CFC-11</td>
<td>231</td>
<td>370 (280)</td>
</tr>
<tr>
<td>CFC-12</td>
<td>512</td>
<td>580 (560)</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>245</td>
<td>420 (370)</td>
</tr>
<tr>
<td>CCl<sub>4</sub></td>
<td>82</td>
<td>89 (89)</td>
</tr>
<tr>
<td>CFC-113</td>
<td>73</td>
<td>80 (80)</td>
</tr>
<tr>
<td>CFC-114</td>
<td>16</td>
<td>40 (20)</td>
</tr>
</tbody>
</table>

^a Mauna Loa May 2016 Mean

^b CONTRAST, 25th percentile below 1500 m (Jan-Feb. 2014)
Several samples below background:
- 20% uncertainty
- Stratospheric intrusions ($O_3 = 71$ ppbv)
- Elevated CFC-11 and CFC-12 correlates to >120 pptv CCl_4
Summary

• Elevated and highly variable CFC-11 values during ARIAs.
• Origins in Shandong and Inner Mongolia
• Strong correlations CFC-11, CFC-12, and CCl₄.
• Suggestive of new CFC production and foam blowing applications.
• Chinese emissions had an influence on downwind regions such as Korea.