Recent Increases in the Burden of Atmospheric CH$_4$: Implications for the Paris Agreement

Ed Dlugokencky1, Martin Manning2, Euan G. Nisbet3, and Sylvia Englund Michel4

1NOAA Global Monitoring Division
2Victoria University of Wellington
3Royal Holloway University of London
4University of Colorado at Boulder
$[\text{CH}_4](t) = [\text{CH}_4]_{ss} - ([\text{CH}_4]_{ss} - [\text{CH}_4]_0)e^{-t/\tau}$

Fit 1984-2006: $\tau = 9.2$ yr

Abrupt shift in CH$_4$ budget

Pinatubo

BB + WLs
Potential Causes of Increased CH$_4$: Changes in [OH]?

- Two 2-box-model studies:
 - Rigby et al. 2017; Turner et al., 2017
- Using MC as proxy, both suggest decreasing trend in [OH]
- Both agree data are consistent with no trend in [OH]
- Detailed spatial and temporal information not used
- Neither suggests a mechanism for Δ[OH]
- Not consistent with 3-D CTM calculations of [OH] (nor 14CO constraint for SH extra-tropics)
- Δ[OH] can not explain δ^{13}C(CH$_4$)
- Suggest δ^{13}CH$_4$ provides only a weak constraint
Potential Causes of Increased CH₄: Changes in OH?

• Not consistent with 3-D CTMs (e.g., Nicely et al., JGR, 2018)

• $\Delta[\text{OH}] = -0.08\pm0.19\%$/decade (1985-2015)
 • Decreased [OH] from increased [CH₄] compensated by:
 • Changes in ↑H₂O, ↑[NOₓ], ↓column O₃, tropical expansion, ↑T

• Biases in box model (e.g., Naus et al., ACP, 2019)

• Investigated systematic biases in transport and OH distribution in box models using 3-D CTM:
 • Accounting for biases reverses trend in [OH], making it positive:
 • Interhemispheric exchange rate
 • N/S asymmetry in [OH] (and “species-dependent” globally-averaged OH)
 • Stratospheric loss
 • Network bias in IHD (as in Pandey et al., 2019)
Globally averaged CH$_4$ and δ^{13}C(CH$_4$)
Is $\delta^{13}\text{CH}_4$ a weak constraint?
*Although wide range of values observed, emission-weighted mean well-defined.

Larger uncertainty may be with Cl
*Small impact on atmospheric $X\text{CH}_4$
*$k^{12}\text{C}/k^{13}\text{C} \sim 1.066$
What does δ^{13}C tell us?

• Schaefer et al., Nature, 2016
 • Increased microbial emissions outside Arctic
 • More likely agricultural sources than wetlands

• Nisbet et al., GBC, 2016; 2019
 • Increased microbial emissions in tropics
 • Wetlands and agricultural sources could contribute
 • Role for meteorology
 • Unlikely that changing lifetime contributed

• Thompson et al., GRL, 2018:
 • \uparrow microbial (36 ± 12) and FF (15 ± 8 CH$_4$ Tg yr$^{-1}$)
 • Offset by BB (-3 ± 2) and soil sink (+5 ± 6 Tg CH$_4$ yr$^{-1}$)
 • No change in atmospheric sink
Does CH₄ threaten target of warming below 1.5°C?

Recent global average CH₄ mixing ratio relative to three scenarios used in the last IPCC assessment report.

Observed changes in radiative forcing for CO₂, CH₄ and N₂O relative to the RCP2.6 scenario.
Summary: Can we Explain the Observations?

• Understanding small changes to global budget is challenging
 • CH$_4$ budget is complex: many sources and sinks, all uncertain
 • Problem poorly constrained by observations
 • Increase over past decade likely caused by combination of multiple processes

• Should not ignore temporal and spatial information
 • Observed changes are abrupt and significant; points to role for wetlands

• Suspect that wetlands are involved and process models are not realistic
 • Fail to account properly for IAV in WL area and “memory effects”

• δ^{13}C(CH$_4$) observations are certainly useful and perhaps misunderstood
 • Need better understanding of big levers: Cl and biomass burning
 • δD(CH$_4$) currently too few to be useful

• Recent increase in CH$_4$ burden hinders attainment of $\Delta T \leq 1.5 ^\circ C$
 • Increases need for costly and difficult carbon capture
Extra Slides
Climate impacts of increasing CH$_4$:
* RCP 2.6 could achieve 1.5°C target
* Already deviating from this trajectory for CH$_4$
* Without CH$_4$ reductions, need CO$_2$ removal
* Ignores SW component of RF (+25%)
* Policy: natural or anthropogenic processes?
Annual mean column-integrated loss for CH$_4$ oxidation by OH and Cl:

- Cl + CH$_4$: 12-13 Tg CH$_4$ yr$^{-1}$ (2.5%)
- Contribution of Cl loss greatest at northern mid-latitudes
- Allan et al. (2007): 13-37 Tg CH$_4$ yr$^{-1}$
- Platt et al. (2004): up to 19 Tg CH$_4$ yr$^{-1}$

Sources of tropospheric Cl:

- Oxidation of natural and anthropogenic halocarbons (CH$_3$Cl, CHCl$_3$, etc.)
- Heterogeneous reactions involving sea salt

Hossaini et al., 2016

Cl + CH$_4$ (Small contribution to total sink):

- Large influence on δ^{13}C(CH$_4$) with $(k^{12C/13C}) \approx 1.06$ or 60‰ fractionation
- Distribution: Hossaini et al., 2016

Annual mean column-integrated loss for CH$_4$ oxidation by OH and Cl:

- Cl + CH$_4$: 12-13 Tg CH$_4$ yr$^{-1}$ (2.5%)
- Contribution of Cl loss greatest at northern mid-latitudes
- Allan et al. (2007): 13-37 Tg CH$_4$ yr$^{-1}$
- Platt et al. (2004): up to 19 Tg CH$_4$ yr$^{-1}$
IPCC SR15: Simple Summary

• Climate change is happening
 • 1°C warming so far
 • Increased extreme weather
 • Rising sea level

• It is happening faster than we expected
 • Disappearing Arctic sea ice

• We are running out of time to limit its larger impacts
 • Zero CO₂ emissions by 2050!
 • Technological change must be guided by policy
Role of Cl (Not just important in the stratosphere...)

- Cl + CH$_4$: Small contribution to total sink despite larger k than for OH
 - Large influence on δ^{13}C(CH$_4$) ($k(^{12}$C/13C)\approx1.06)
- Allan et al., 2001
 - Evidence of role of Cl in observed δ^{13}C(CH$_4$) at ~40°S

- Cl magnitude and distribution not well constrained
 - Allan et al., 2007: assumed photochemical from sea salt; guessed distribution
 - Hossaini et al., 2016: calculated magnitude and distribution with CTM
Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades, R. L. Thompson et al., GRL, 2018

Optimized CH$_4$, C$_2$H$_6$, and δ^{13}C(CH$_4$); from 2006-14:
* ↑microbial (36 ± 12) and FF (15 ± 8 CH$_4$ Tg yr$^{-1}$)
* Offset by BB (-3 ± 2) and soil sink (+5 ± 6 Tg CH$_4$ yr$^{-1}$)
* No change in atmospheric sink

Important details:
* 2-D model (12-boxes, 4 x lat, 3 x vert)
* Used only Allan Cl distribution
* Used constant CH$_4$/C$_2$H$_6$ emission ratio
Nisbet et al., 2018, in review:

Emissions (black/gray):
* Emissions increase by ~40 Tg CH$_4$ yr$^{-1}$ globally
* Avg δ^{13}C of src gets lighter (30-90°N and 0-30°S)

Sinks (green):
* Large Δsink (±5% x [OH]) to explain observations
* Difficult to reconcile with short-term variability
"Emissions" = $d[\text{CH}_4]/dt + [\text{CH}_4]/\tau$

Trend (1984-2006) = $0.0 \pm 0.3 \text{Tg CH}_4 \text{yr}^{-1}$
Annual mean column-integrated loss for CH$_4$ oxidation by OH and Cl:
• Cl + CH$_4$: 12-13 Tg CH$_4$ yr$^{-1}$ (2.5%)
• Contribution of Cl loss greatest at northern mid-latitudes
• Allan et al. (2007): 13-37 Tg CH$_4$ yr$^{-1}$
• Platt et al. (2004): up to 19 Tg CH$_4$ yr$^{-1}$

Sources of tropospheric Cl:
• Oxidation of natural and anthropogenic halocarbons (CH$_3$Cl, CHCl$_3$,...)
• Heterogeneous reactions involving sea salt

Hossaini et al., 2016
δ^{13}CH$_4$ normalized to 2002:

* 3-D CTM with [OH] reduced 8% and constant CH$_4$ emissions
* The influence of sink fractionation on atmospheric δ^{13}CH$_4$ is determined not only by [OH], but the weighted averages of OH, Cl, O(^1D), and soil sinks.
The $\delta^{13}C$-CH$_4$ Constraint:

- Before Chemistry: $\delta^{13}C$ = -53.6‰
- Observed Atmospheric: $\delta^{13}C$ = -47.3‰

Sherwood et al., 2017