Open-path Mid-infrared Dual-comb Spectroscopy for Measurement of Ambient Ethane and Propane

Kevin C. Cossel, Gabriel Ycas, Fabrizio Giorgetta, Esther Baumann, Jacob T. Friedlein, Daniel Herman, Eleanor M. Waxman, Ian Coddington, Nathan R. Newbury
NIST Boulder, Physical Measurement Laboratory, Applied Physics Division, Boulder, CO 80305

kevin.cossel@nist.gov nathan.newbury@nist.gov

Why Dual-comb Spectroscopy (DCS)?

- Extremely high resolution (0.0067 cm⁻¹)
- Well-suited to outdoor studies
- Can propagate >1 km with spatial coherence
- Fast (20 second) time resolution
- Ability to average for minutes to hours
- Low sensitivity to air path turbulence
- No moving parts
- Broad spectral coverage = multi-species detection (can extract dry mixing ratios)
- Piecewise polynomial baseline removal
- Automatic telescope pointing servo
- Can propagate >1 km with spatial coherence
- Broad spectral coverage = multi-wavebands
- 4.5-5 µm measurements (preliminary)

Here, we demonstrate DCS across long open-air paths in the mid-infrared and show detection of controlled releases of acetone and isopropanol across a 162-m path, measurement of methane and NMHCs across a 1-km path for several days, and preliminary measurements of CO, N₂O, and O₃.

References

Ycas et al. (2019) Optica, 6, 165, Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths
Ycas et al. (2018) Nature Photonics, 12, 202, High-sensitivity mid-infrared dual-comb spectroscopy spanning 2.6 to 3.2 µm
Wacker et al. (2013), JQSRT, 127, 128, Measurement of hydrocarbons with a dual-frequency comb spectrometer
Coddington et al. (2018) Optica, 5, 341, Dual-comb spectroscopy
Cundiff and Ycas (2017) Rev. Mod. Phys., 89, 325, Coherence: Femtosecond optical frequency combs

Technique

DCS principle

Mid-infrared frequency comb

Open-path DCS

Results

Detection of VOCs

Measurement of ambient NMHCs

1.56 µm generation

1.05 µm generation

1.1 µm generation

1.1 µm generation

5 µm generation

40 mW

10.5 1.10 1.15 Wavelength (µm)

0.0 0.5 1.0 6 mW

0.0 0.2 0.4 0.6 0.8 1.0

Intensity

Intensity

40 mW

0.0 0.5 1.0 1.5

Wavelength (nm)

Wavelength (nm)

Temperature

Temperature

H₂O, CH₄, CH₃OH, and CH₃OCH₃

H₂O, CH₄, CH₃OH, and CH₃OCH₃

Approach

Approach

Optical gas and liquid

Reference

Optical gas and liquid

Reference

Comb 1

Comb 2

Gas sample

Gas sample

Combination

Combination

THz

f₁ (~200 MHz, 0.0067 cm⁻¹)

f₁ (~100 Hz, 0.0067 cm⁻¹)

Δf (~100 Hz)

Δf (~200 MHz)

Δf (~100 Hz)

Δf (~200 MHz)

Δf (~100 Hz)

Δf (~200 MHz)

Δf (~100 Hz)