Creating an Emissions Map for Benzene Based on Fossil Fuel CO$_2$ emissions: "HESTIA Benzene"

I. Vimont1,2, J. Turnbull1,2, T. Lauvaux3, K. Gurney4, B.R. Miller6,2, and S.A. Montzka2

1National Research Council Post-Doc, Boulder, CO 80305; 303-497-6044, E-mail: isaac.vimont@noaa.gov
2NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305
3GNS Science, National Isotope Centre, Lower Hutt, New Zealand
4The Pennsylvania State University, Department of Meteorology and Atmospheric Science, University Park, PA 16802
5Arizona State University, Tempe, AZ 85287
6Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309

Urban emissions are an important component of the global atmospheric burden of many trace gases. These emissions are estimated through a variety of methods, each with its own set of advantages and disadvantages. In this work, we present an effort to use tracer ratios to fossil fuel CO$_2$ in order to estimate benzene (C$_6$H$_6$) emissions at Indianapolis, Indiana, as part of the Indianapolis Flux Experiment (INFLUX). INFLUX is a multiinstitutional experiment that combines trace gas measurements with high-resolution modeling and surface energy balance to evaluate urban emissions and provide a test bed for urban experiments.

Initially, we used the measurements of C$_6$H$_6$ and fossil fuel-derived carbon dioxide (CO$_{2FF}$) from INFLUX to obtain an approximate ratio of C$_6$H$_6$:CO$_{2FF}$ based on the measurements. We then combined county-level C$_6$H$_6$ emissions from the U.S. Environmental Protection Agency’s National Emissions Index 2014 (EPA NEI 2014) with CO$_{2FF}$ estimates obtained from the Vulcan data product. We subdivided these emissions into eight sectors, Residential, Commercial, Industrial, On-Road, Non-Road, Rail, Utility, and Airport. For each sector, we calculated a unique C$_6$H$_6$:CO$_{2FF}$ ratio. Once we obtained the estimated sectoral emission ratios, we used the Hestia data product for Indianapolis (Gurney et al., 2012) as a base, and multiplied each sector in the Hestia product by our estimated ratios. We then transported the Hestia-derived emissions for each of these sectors using footprints generated for each of the towers at Indianapolis by the Weather Research Forecast chemistry model (WRF-chem). This generated so-called “receptors”, or simulations of the tower measurement sites.

We compared the receptor data to the real-world tower measurements and found the predicted receptor C$_6$H$_6$ ratio to be too large. This was expected due to overestimation of On- and Non-Road C$_6$H$_6$ (mobile sector) in the EPA NEI (e.g., Borbon et al., 2013). Once we reduced the mobile sector C$_6$H$_6$ by a factor of 2 (ref), we obtained good agreement between the real-world measurements and the receptor values (Figure 1). Using these results, we present a new method for estimating benzene emissions based off of a fossil fuel CO$_2$ emissions model.

Figure 1. Plot benzene vs CO$_{2FF}$ from INFLUX towers 2, 3, 5, 6–9, and 10 (left) and our receptor predicted benzene and CO$_{2FF}$ (right). The receptor plot includes all days from 11/2012–10/2013, while data on right is all data from INX towers for 2011–2016. Slopes indicate C$_6$H$_6$:CO$_{2FF}$ ratios. Receptor data has had mobile sector ratios reduced by a factor of 2.