
Y.Y. Cui1, A. Vijayan1, M. Falk1, Y.K. Hsu1, D. Yin1, Z. Zhao1, J. Avise1, X.M. Chen1, Y. Chen1, K.R. Verhulst1, R. Duren1, C. Miller1, R.F. Weiss1, R. Keeling4, J. Kim4, L.T. Iraci5, T. Tanaka6,7, M.S. Johnson6, M. Fischer8, K. Stroud1, J. Herner1, and B. Croes1

1California Air Resources Board, Sacramento, CA 95812; 916-323-2999, E-mail: Yuyan.Cui@arb.ca.gov
2Washington State University, Department of Civil and Environmental Engineering, Pullman, WA 99164
3NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
4Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92037
5NASA Ames Research Center, Atmospheric Science Branch, Moffett Field, CA 94043
6NASA Ames Research Center, Earth Science Division, Moffett Field, CA 94035
7Japan Weather Association, Tokyo, Japan
8Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720

California adopted the landmark Global Warming Solutions Act of 2006 to reduce Greenhouse Gas (GHG) emissions to the 1990 levels by 2020, and has also enacted several ambitious climate regulations to mitigate the global warming impacts of methane (CH4), such as Senate Bill No. 1383 which requires a 40% reduction in CH4 emissions below 2013 levels by 2030.

To achieve the ambitious emission reduction goals and implement real and efficient reduction policies, a thorough understanding of CH4 emissions is important. In this study, we conducted a multiplatform inversion analysis for a multiyear evaluation of bottom-up CH4 emissions inventories of California, based on atmospheric measurements from two tower networks and one aircraft campaign during the period. The tower networks were California Air Resources Board’s Statewide GHG Monitoring Network, and a regional-scale urban network in Los Angeles built by the Megacities Carbon Project. The aircraft measurements were conducted by NASA Ames in northern California. It is the first time that such an analysis has been conducted by using multiple measurement platforms and different prior inventories for multiple years to constrain CH4 emissions in California. The rigorous inversion analysis has important policy implications for regulatory programs. It provides a multiyear evaluation of the emissions inventory using independent atmospheric measurements, investigates the utility of a complementary multiplatform approach in understanding spatial and temporal patterns of CH4 emissions in the state, and identifies opportunities for the expansion and applications of the monitoring network.

Figure 1. Major components for the inversion analysis are shown in the left panel; inversion results by subregion are shown in the right panel.