Improved mechanistic understanding of natural gas methane emissions from spatially-resolved aircraft measurements

Stefan Schwietzke1,2, Gabrielle Pétron1,2, Stephen Conley3,4, Cody Pickering5, Ingrid Mielke-Maday1,2, Edward J. Dlugokencky2, Pieter P. Tans2, Tim Vaughn5, Clay Bell5, Daniel Zimmerle5, Sonja Wolter1,2, Clark W. King2, Allen B. White2, Timothy Coleman1,2, Laura Bianco1,2, Russell C. Schnell2

1CIRES/CU Boulder, 2NOAA/ESRL Boulder, 3Scientific Aviation, 4UC Davis, 5Colorado State Univ.

Funding: DOE, NOAA, Southwestern Energy, XTO Energy, Chevron, Statoil, AGA, Colorado Energy Research Collaboratory
Previous studies:

- CH₄ emission estimates from top-down (atmospheric) studies greater than bottom-up (inventory, component/facility) throughout the US
- Inventories may underestimate CH₄ emissions, miss sources

- Reconciliation of top-down & bottom-up through statistical accounting of “super-emitters”
- E.g., 2% of facilities responsible for half of the emissions

Adapted from Zavala-Araiza et al. 2015 Barnett study.
The Ugly Duckling: activity data from oil and gas production

Tier 1 Bottom-up

- "Routine" emission event, facility type A
- Emission rate
- Duration
- Frequency
- # of sites

\[\text{Emissions} = \text{g CH}_4/\text{hr} \times \text{hr} \times \text{yr}^{-1} \times \text{# of sites} \]

Tier 2 Bottom-up

- Publicly available activity data, average day
- Routine vs. episodic vs. chronic event?
- Merge with measurements, event types

Barnett: statistical TD-BU reconciliation

Tier 3 Bottom-up

- Industry/operator supplied activity data
 - Match each flight period
 - Categorize facility types at finer level
 - Characterize events (episodic, chronic, routine)
- Site access for component measurements

Stefan Schwietzke, NOAA/CIRES, May 2017
Fayetteville Shale 2015 study design (Tier 3 approach)

- Hourly activity data from nearly all operators in study area (99% of natural gas production and infrastructure)
- Simultaneous measurements at multiple scales/techniques

Top-down

Bottom-up

- Facility-level
- Component-level
Fayetteville Shale 2015 study aircraft sampling overview

- 15 flights in 23 days (Sep/Oct)
- 2 flights (Oct 1 & 2) with ideal meteorological conditions for aircraft mass balance

Aircraft profiles:
- Vertical mixing, PBL height
- Profiler: wind, PBL height
- Upwind
- Downwind

Study area

- Remaining flights:
 - Identify larger emitting sub-regions incl. repeats to check consistency
 - Sample ethane:methane ratios for source attribution
 - Quantify CH$_4$ emissions from individual facilities

Stefan Schwietzke, NOAA/CIRES, May 2017
October 1, 2015 flight overview

150 km x 65 km box

Stefan Schwietzke, NOAA/CIRES, May 2017
First spatially-resolved aircraft-based CH$_4$ emission estimates for a basin

- Strong spatial correlation with well count (R$^2 = 0.81$ for ~2 km wide longitudinal bins)

Stefan Schwietzke, NOAA/CIRES, May 2017
First spatially-resolved aircraft-based CH$_4$ emission estimates for a basin

- Strong spatial correlation with well count ($R^2 = 0.81$ for \sim2 km wide longitudinal bins)
- Also strong spatial correlation with natural gas production ($R^2 = 0.75$)

Stefan Schwietzke, NOAA/CIRES, May 2017
Raster flights on other days further confirm the spatial emission pattern.
Substantial episodic emissions midday during aircraft sampling

Gas production normalized CH₄ emissions (“leak rate”) in the West double compared to East

- About 1/3 of total CH₄ emissions → Explains ~2/3 of W-E difference in leak rate
- Midday peak vs. annual average!
- Episodic sources partially responsible for day-to-day emission variability (can’t tell without spatial analysis)

Stefan Schwietzke, NOAA/CIRES, May 2017
Summary

• First spatially-resolved aircraft-based CH$_4$ emission estimates for a basin
 - Used for a spatially/temporally resolved TD-BU comparison to understand TD-BU differences mechanistically rather than statistically
 - Important for prioritizing mitigation targets

• Episodic sources are large contributor to midday CH$_4$ emissions and drive “leak rate” difference in the basin
 - Temporal interpretation of TD estimates is key (peak emissions)
 - Cooperation / data sharing with local operators is essential (reported activity levels and equipment/facility counts)
 - Site access allows for measurement methods comparison

Stefan Schwietzke, NOAA/CIRES, May 2017