Implications of the Continued Increase in Atmospheric Methane Burden

E. Dlugokencky¹, M. Crotwell¹,², A. Crotwell¹,², P.M. Lang¹, L. Bruhwiler¹, A. Wang¹, K. Thoning¹
¹NOAA ESRL GMD, ²CIRES
*CH₄ budget nearly in steady state: Source/sink imbalance < 6%
*Small reductions in emissions would stabilize CH₄ burden
Assume no trend in lifetime - SS function

$$[CH_4](t) = [CH_4]_{ss} - ([CH_4]_{ss} - [CH_4]_0)e^{-t/\tau}$$
\[\text{"Emissions"} = \frac{\text{d}[\text{CH}_4]}{\text{dt}} + \frac{[\text{CH}_4]}{\tau} \]

Trend = 0.0 ± 0.6 Tg CH\textsubscript{4} yr-1 (95% c.l.)
What we know from atmospheric observations:

• The increase since 2007 started abruptly
• GR suggests tropics are important
• $\delta^{13}C(CH_4)$ is decreasing
 – Constrains possible drivers
• Not likely increased FF emissions
• Not likely increased Arctic emissions
What we know from atmospheric observations:

• The increase since 2007 started abruptly
• GR suggests tropics are important
• $\delta^{13}\text{C}(\text{CH}_4)$ is decreasing
 – Constrains possible drivers
• Not likely increased FF emissions
• Not likely increased Arctic emissions
Globally averaged CH_4 and $\delta^{13}\text{C}(\text{CH}_4)$

CH_4 (ppb)

$\delta^{13}\text{C}$ (%)

Sylvia Michel, INSTAAR
What does $\delta^{13}C$ tell us?

• Schaefer et al., Nature, 2016
 – Increased microbial emissions outside Arctic
 – More likely agricultural sources than wetlands

• Nisbet et al., GBC, 2016
 – Increased microbial emissions in tropics
 – Wetlands and ag sources could contribute
 • Role for meteorology
 – Unlikely that changing lifetime contributed
What we know from atmospheric observations:

- The increase since 2007 started abruptly
- GR suggests tropics are important
- $\delta^{13}C(CH_4)$ is decreasing
 - Constrains possible drivers
- Not likely increased FF emissions
- Not likely increased Arctic emissions
Fossil CH$_4$ emissions not increasing (Schwietzke et al., Nature, 538, 88-91, 2016)
What we know from atmospheric observations:

- The increase since 2007 started abruptly
- GR suggests tropics are important
- δ^{13}C(CH$_4$) is decreasing
 - Constrains possible drivers
- Not likely increased FF emissions
- Not likely increased Arctic emissions
Arctic permafrost and clathrates?

Difference between northern and southern polar annual means

No recent change in Arctic emissions based on polar zonal means.

Economic collapse in fSU
ENSO Phase: Precipitation

Base: 1961-1990

Source: GPCC

Australian BoM

La Niña

El Niño
Conclusions

• Increased CH$_4$ GR starting in 2007
 – Initiated by tropical wetlands
 • Consistent with: abrupt timing, ENSO, spatial patterns, and observed δ13C (CH$_4$)
 – Sustained by increased agricultural emissions
 – Potential contribution from changing lifetime

• Potential Climate Feedback
 – Connection with meteorology
 – Should we be concerned?
\[[\text{CH}_4](t) = [\text{CH}_4]_{ss} - ([\text{CH}_4]_{ss} - [\text{CH}_4]_0)e^{-t/\tau} \]

Lifetime ≈ 9.2 yr
Why is CH$_4$ Important?

- 0.51* W m$^{-2}$ RF in 2016 (CO$_2$: 1.99 W m$^{-2}$)
 - ΔRF = 25 mW m$^{-2}$ since 2006
- \sim0.3 W m$^{-2}$ indirect RF (O$_3$ and H$_2$O)
- Drivers behind current trends are poorly understood
 - Emissions? If so, which sources?
 - Sink? If so, by what mechanism?
“Emissions” = \(\frac{d[\text{CH}_4]}{dt} + \frac{[\text{CH}_4]}{\tau} \)

Trend = 0.0 ± 0.6 Tg CH\(_4\) yr\(^{-1}\) (95% c.l.)
Dlugokencky et al. 2001 tropical WLs
Global CH$_4$ Budget by Source

<table>
<thead>
<tr>
<th>Source</th>
<th>Bousquet (Tg/yr)</th>
<th>IPCC Range (Tg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>110±13</td>
<td>74-106</td>
</tr>
<tr>
<td>Enteric fermentation</td>
<td>90±14</td>
<td>76-92</td>
</tr>
<tr>
<td>Rice agriculture</td>
<td>31±5</td>
<td>31-112</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>50±8</td>
<td>14-88</td>
</tr>
<tr>
<td>Waste</td>
<td>55±11</td>
<td>35-69</td>
</tr>
<tr>
<td>Natural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>147±15</td>
<td>100-231</td>
</tr>
<tr>
<td>Termites</td>
<td>23±4</td>
<td>20-29</td>
</tr>
<tr>
<td>Oceans</td>
<td>19±6</td>
<td>4-15</td>
</tr>
<tr>
<td>Total</td>
<td>525±8</td>
<td>503-610</td>
</tr>
<tr>
<td>Sinks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troposphere</td>
<td>448±1</td>
<td>428-511</td>
</tr>
<tr>
<td>Stratosphere</td>
<td>37±1</td>
<td>30-45</td>
</tr>
<tr>
<td>Soil</td>
<td>21±3</td>
<td>26-34</td>
</tr>
<tr>
<td>Total</td>
<td>506</td>
<td>492-581</td>
</tr>
</tbody>
</table>