Study of the Diurnal Cycle of Microphysical Properties of Clouds in the Amazon Basin Using GOES Measurements

Pugliesi Silva, A. C., Correia, A. L., and Monteiro, M. M.

Institute of Physics, University of São Paulo, São Paulo, Brazil

Email correspondence: andre.cezar.silva@gmail.com

Methodology, Data acquisition and Objectives

In this work, we used a set of radiance measurements from channels 1, 2 and 4 (0.63, 3.9 and 11 μm, respectively) of NOAA's Geostationary Operational Satellite (GOES-13) [2]. These images were obtained on the largest yellow square shown in the map (2°N, 70°W, 49°W, 16°S) (Fig. 1) between 2010 and 2014.

The Amazon Basin plays a key role in Earth's hydrological cycle and in the planetary energy budget. One key aspect is understanding the influence of aerosols on cloud microphysics, cloud formation and evolution [1].

Visible, Near and Thermal Infrared Channels

The analyzed data are in a 40000 km² pristine forest region (small yellow square), divided in three seasons: humid, dry (without pollution), and biomass burning. These seasons were defined using data from AERONET [3] (Fig. 2) and NASA's Giovanni website [4] (Fig. 3). The libRadtran radiative transfer code [5] was used to obtain estimates of the effective radius of droplets and ice particles in convective clouds.

Temperature by Effective Radius for Cloud Pixels on different seasons over the Amazon Basin

The dry season shows relatively more scatter and less evident mixed phase droplet growth. The biomass burning season shows in average a strong density of warmer clouds, but also the occurrence of very cold cloud tops.

Temperature by Effective Radius 2D Histograms for different seasons

Figures 7, 8 and 9 show 2D histograms of seasonal averages of brightness temperature as a function of the effective radius for cloud pixels, between 2010 and 2014.

Figure 10 shows the diurnal evolution of temperature values as a function of effective radius for cloud pixels. The top line corresponds to 5-year hourly averages of a representative day in the wet season. The middle and bottom lines correspond to the dry and biomass burning seasons, respectively. The blue, black, and red lines represent the 25th, 50th, and 75th percentiles, respectively.

In the wet season, which has more data points, in average clouds start forming with relatively smaller droplets and warmer tops early in the morning. By noon droplets are bigger and deep convection starts to develop, with cloud tops reaching temperatures below -40°C. Regarding the dry season, less clouds are formed, as evidenced by the smaller number of data points. In spite of this, it is possible to see that the clouds in the dry season are warmer than in the wet season, in average. Throughout the day the values of effective radius increase, but not as strongly as in the wet season. During the biomass burning season, with higher aerosol availability in the atmosphere, mixed phase clouds (temperatures between 0°C and -40°C) reach lower temperatures in average and with larger effective radii) along the day. This occurs faster than in the dry season without pollution. For low and warm clouds (with temperatures above 0°C), the droplet effective radius decreases over time. Comparing the graphs at 1:00PM LT, it is evident that the wet and biomass burning seasons have more cloud pixels with lower temperatures and high effective radii than the dry season. However, this occurs much more rapidly in the biomass burning season, that shows a relatively fast behavior in increasing the values of the effective radius. This can occur due to the greater presence of aerosols in the atmosphere.

Figure 10: Diurnal cycle of microphysical properties of Clouds over the Amazon basin & wet, dry and burning biomass dry season.

Acknowledgements

This research is funded by the Coordination of Higher Education (CAPES), a foundation linked to the Brazilian Ministry of Education (MEC), to which we are grateful. A. Correia thanks PAPESPI grant 2010/15959-3.

References

[3] - https://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_opera_v2_new?site=Alta_Floresta&nachal=0&year=2010&aero_water=0&level=3&if_day=0&if_err=0&place_code=10&year_or_month=1
[4] - https://giovanni.gsfc.nasa.gov/giovanni/#service=ArAvTs&starttime=2010-01-01T00:00:00Z&endtime=2014-12-31T23:59:59Z&bbox=-67.5,-7,-62.5,-3&data=AIRX3STM_006_TotH2OVap_A