Observations of the Surface Radiation Budget and Cloud Radiative Forcing From Pan-Arctic Land Stations

C.J. Cox1,2, C.N. Long1,3, T. Uttal2, S. Starkweather1,2, S.M. Crepinsek1,2, M. Maturilli4, N. Miller1,5, E.A. Konopleva-Akish6,2, V.Y. Kustov7, K. Steffen8, G.D. Boer1,2, A. McComiskey3 and R.S. Stone6,3

1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309; 303-497-4518, E-mail: christopher.j.cox@noaa.gov
2NOAA Earth System Research Laboratory, Physical Sciences Division (PSD), Boulder, CO 80305
3NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305
4Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
5University of Colorado, Department of Atmospheric and Oceanic Sciences, Boulder, CO 80309
6Science and Technology Corporation, Boulder, CO 80305
7Arctic and Antarctic Research Institute (AARI), Saint Petersburg, Russia
8Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland

High-quality, continuous, long-term observations of radiative fluxes are collected from land stations surrounding the Arctic Basin, including through the Baseline Surface Radiation Network (BSRN). The Radiation Working Group of the International Arctic Systems for Observing the Atmosphere (IASOA) is currently analyzing data acquired from Utqiaġvik (Barrow), Alaska (1993-2016), Alert, Canada (2004-2016), Ny-Ålesund, Svalbard (1993-2016), Eureka, Canada (2007-2016), Tiksi, Russia (2011-2016), Oliktok Point, Alaska (2014-2016) and Summit, Greenland (2010-2012). The measurements include upwelling and downwelling longwave and shortwave fluxes, as well as direct and diffuse shortwave flux components, and surface meteorology. The observations are post-processed using the Radiative Flux Analysis method, which in addition to basic quality control provides value-added metrics such as cloud radiative forcing, optical depth and fractional sky cover. Inter-site comparisons are presented as well as temporal analyses of both the net surface radiation and individual components of the surface radiation budget.
Figure 1. Stereographic map of the Arctic showing the locations of IASOA stations that are the focus of the analysis.