Development of a New N₂O/CO Cavity Ring-Down Spectrometer for Sub-ppb Ambient Gas Monitoring

Graham Leggett, Feng Dong, Derek Fleck, John Hoffnagle, Kuan Huang, Nabil Saad, Jingang Zhou
Picarro, Inc., 3105 Patrick Henry Drive, Santa Clara, CA 95054, USA

Results and Discussion

Introduction

With a global warming potential of nearly 300, N₂O is a critically important greenhouse gas, contributing about 5% of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N₂O emissions, contributing nearly 75% of US N₂O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N₂O. We report here a new mid-infrared laser-based cavity ring-down spectrometer (Picarro G5310) that was recently developed to measure sub-ppb ambient concentrations of two key greenhouse gas species, N₂O and CO, simultaneously. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The new optical analyzer was set up to monitor N₂O and CO, along with CO₂ and CH₄, in ambient air obtained from a 10 meter tower in Santa Clara, California. Evidence of contributions from traffic and a nearby sewage treatment facility were expected in the measurement data.

Cavity Ring-Down Spectroscopy

Cavity ring-down spectroscopy (CRDS) is a time-based absorption technique employing a high-finesse optical cavity to deliver effect path-lengths in the order of several kilometers. Combined with precise temperature, pressure, and wavelength control, CRDS offers high sensitivity, precision, and low-drift measurements. The G5310 further extends this performance via the use of a quantum-cascade laser (QCL) operating in the mid-infrared, a region of the spectrum offering significantly higher sensitivity for nitrous oxide and its than relevant absorption features at shorter wavelengths in the near-infrared.

Analyzer – Specifications and Test Results

<table>
<thead>
<tr>
<th>Specification</th>
<th>N₂O</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision (1σ: 5 sec)</td>
<td>0.2</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Measurement range</td>
<td>1-1,500 ppb</td>
<td>1-1,500 ppb</td>
<td>0-3%</td>
</tr>
<tr>
<td>Drift (24 hrs)</td>
<td><0.1 ppb</td>
<td><0.1 ppb</td>
<td><0.1 ppb</td>
</tr>
</tbody>
</table>

Experimental Set-up

The experiment was located at the Picarro facility in Santa Clara, California. The G5310 analyzer was connected to a sampling point at a height of approximately 50 meters, with a sample line length of approximately 40 meters. Sample line material was a fluorinated polymer and the air sample was collected at a flow rate of 240 sccm, without drying.

Conclusions

Performance test data obtained during development of the G5310 validates the analyzer for long-term background measurements of N₂O and CO. Precision and drift characteristics make the G5330 the ideal choice for measurement network deployment, where frequency of calibration is critical to efficient operations, and long-term measurement precision is vital. In addition, the analyzer has been shown to have the necessary dynamic range to provide essential monitoring capabilities in urban environments. The CO₂ measurement based on ¹³CO₂ further extends the range of potential monitoring applications.

Interested in learning more?

- Contact Graham Leggett (gleggett@picarro.com)
- Visit www.picarro.com