Ensuring High-Quality Data from NOAA’s Cooperative Global Air Sampling Network

M.J. Crotwell1,2, E.J. Dlugokencky1, P.M. Lang2, D.H. Neff1,2, A.M. Crotwell1,2, E. Moglia1,2, J. Mundi1,2, and K. Thoning2
1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309.
2NOAA Earth System Research Laboratory, Global Monitoring Division, 325 Broadway, Boulder, Colorado 80305
Phone: 303-497-4728, E-mail: Molly.Crotwell@noaa.gov

Introduction
- NOAA/ESRL/GMD Cooperative Global Air Sampling Network started in the 1960s and now includes weekly samples at ~60 sites (Fig. 1, red circles).
- Prepared flasks are shipped to a site, air samples are collected in series in two flasks, and then the flasks are returned to Boulder, Colorado for measurement (Pics. 1-3).
- In 2015, more than 6,000 discrete air samples collected from this network were measured for atmospheric CO2, CH4, CO, H2, N2O, and SF6.
- Data quality assurance (QA) and quality control (QC) are fundamental parts of our long-term data records.

Data Quality Assurance
Measurement:

<table>
<thead>
<tr>
<th>Gas</th>
<th>Technique</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>NDIR</td>
<td>3 standards</td>
</tr>
<tr>
<td>CH4</td>
<td>GC, FID</td>
<td>1 standard</td>
</tr>
<tr>
<td>N2O/SF6</td>
<td>GC, ECD</td>
<td>8 standards offline relative to reference</td>
</tr>
<tr>
<td>CO</td>
<td>VUVRF</td>
<td>6 standards offline relative to reference and a “zero”</td>
</tr>
<tr>
<td>H2</td>
<td>HePDD</td>
<td>1 standard</td>
</tr>
</tbody>
</table>

- QA is performed in the CCGG measurement lab with daily control checks, weekly field samples, short-term target tanks analyzed every two weeks, and long-term target tanks analyzed twice per year.
- Fig. 2 shows short-term target tank results for CH4 since 2005.

Equipment and Training:
- All portable sampling units (PSUs) are tested in Boulder before they get deployed to a field site (Fig. 3).
- Flasks are prepared with fill gas before they are shipped to a site.
- Budget constraints prohibit routine site visits and technician training in Boulder.

Selection of Data for Spatial Representativeness
- Ensure data can be compared with model results

<table>
<thead>
<tr>
<th>Gas</th>
<th>Filtering Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Symmetrical statistical filter</td>
</tr>
<tr>
<td>CH4</td>
<td>Consider other species</td>
</tr>
<tr>
<td>N2O/SF6</td>
<td>Non-symmetrical stiff filter</td>
</tr>
</tbody>
</table>

- CO2 is selected by fitting a smooth curve, then iteratively flagging values outside ±3-σ (Fig. 12).
- For N2O and SF6, a stiff fit and asymmetrical filter is used. Fig. 13 and 14 compare loose and stiff filters for SF6 at TAP.

Data Quality Control
- Flask pairs:
 Example: PSU failed at the site causing insufficient flushing in flasks (Fig. 4).

- Sites at similar latitudes:
 Example: Leak in sample collection system at Cold Bay, Alaska (CBA, Fig. 5).

- Flask sample contamination:
 Example: High N2O at certain sites with, as yet, unknown cause (Fig. 6).

- Known analytical problems:
 Example: Anomalous results caused by measurement delays (Figs. 7 and 8).

Summary and Conclusions
- Data from NOAA/ESRL/GMD’s Cooperative Global Air Sampling Network are vital to large-scale studies of atmospheric CO2, CH4, N2O, SF6, and CO.
- To be most effective, these long-term data records must be carefully scrutinized so samples with collection or measurement problems are identified.
- Quality assurance and quality control (QA/QC) are performed with several different methods and programs developed in GMD. This includes:
 - Monitoring flow rates, flask pressures, and reference gas responses from every analysis performed.
 - Comparing results from flask pairs, different gases, different sites, and different sampling methods.

Remaining Issues
- Assign uncertainties for CO2, N2O, and SF6.
- Increase our supply of spare samplers (PSUs) and parts.
- Administrative issues: keeping contracts current, shipping problems/delays

- Time series:
 Example: Sampling location moved closer to local sources at the airport (Fig. 9).

- Flask pressures during measurement:
 Example: Equipment problems at Shemya Island, Alaska (Fig. 10).

- Independent measurements (co-located or same-air comparisons):
 Example: Mauna Loa CO2 flask results compared to in situ data (Fig. 11).