High-accuracy, High-precision, High-resolution, Source-specific Monitoring of Urban Greenhouse Gas Emissions? Results to Date from INFLUX

J. Turnbull1,2, C. Sweeney1,2, K. McKain3,2, I. Vimont1, S. Lehman4, K.J. Davis4, T. Lauvaux5, N. Miles5, S. Richardson5, B. Nathan5, K. Wu5, P.B. Shepson6, A. Heimburger6, K.R. Gurney7, R. Patarasuk7, A. Karion8 and J. Whetstone8

1GNS Science, National Isotope Centre, Lower Hutt, New Zealand; 303-497-4836, E-mail: jocelyn.turnbull@noaa.gov
2NOAA Earth System Research Laboratory, Global Monitoring Division (GMD), Boulder, CO 80305
3Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309
4Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, CO 80309
5The Pennsylvania State University, University Park, PA 16802
6Purdue University, West Lafayette, IN 47907
7Arizona State University, Tempe, AZ 85287
8National Institute of Standards and Technology, Gaithersburg, MD 20880

The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, in situ and flask measurements of GHGs and ancillary tracers from towers, aircraft and onroad platforms, and atmospheric modeling to provide high-accuracy, high-resolution, and source-specific monitoring of emissions of GHGs from the city. This presentation will highlight how observations from the different platforms and measurement methods can be integrated to attribute urban carbon dioxide (CO2) emissions to specific source sectors and constrain overall emissions.

Recent research in several cities has shown that the urban biogenic CO2 flux is poorly-known but non-negligible, even in winter, so that separation into biogenic and fossil components is essential if CO2 emissions are to be reliably constrained. In addition to in situ CO2 observations, we determine fossil fuel CO2 (CO2ff) at high resolution by combining flask 13CO2 and carbon monoxide (CO) measurements with in situ CO observations. This improves both aircraft mass balance and atmospheric inversion estimates (using tower-based measurements) of urban CO2 fluxes, relative to the use of CO2 measurements alone. In the example of Indianapolis, this technique also allows separation and quantification of the CO2ff emissions from the large Harding Street coal-fired power plant. We will also present results of our initial attempts to further resolve urban source-sector CO2ff emissions using the wealth of information available from NOAA multispecies flask measurements and point to possible ways forward to resolve this challenging problem.

Figure 1. Looking west towards Indianapolis. INFLUX tower two is in the left foreground, photo was taken during an aircraft sampling flight.