

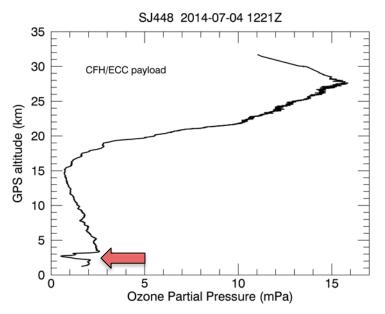
"Ticosounding" Turrialba Profiling volcanic SO₂ in Costa Rica

Henry B. Selkirk¹, Gary Morris², Holger Vömel³, Jorge Andrés Diaz⁴, Ernesto Corrales⁴, Paul Nord⁵, Jessica Valverde⁶, Nickolay Krotkov⁷, Can Li⁸ and Simon Carn⁹

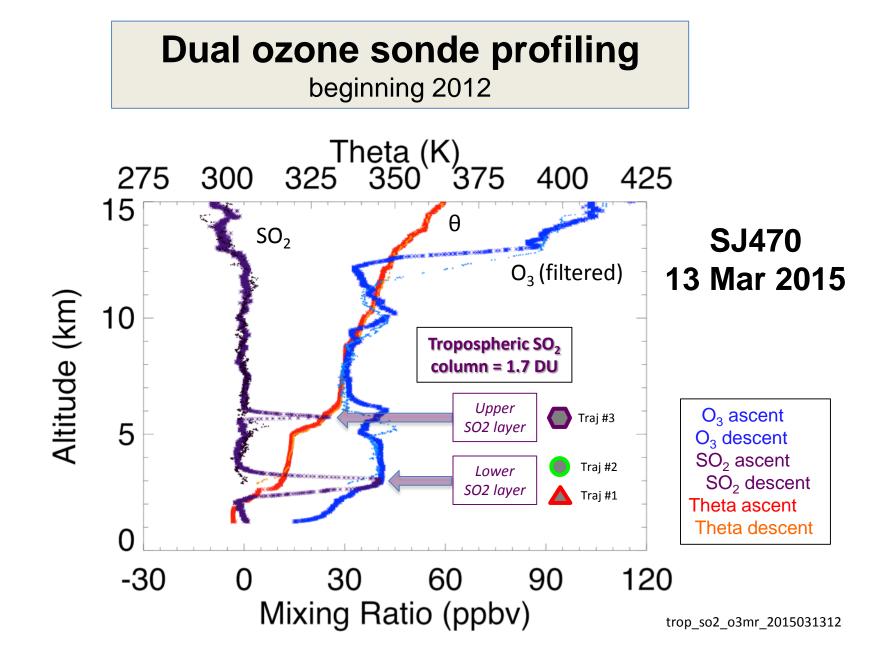
¹GESTAR-NASA GSFC ²St. Edwards University ³NCAR EOL ⁴Universidad de Costa Rica ⁵Valparaiso University ⁶Tibas, Costa Rica ⁷NASA GSFC ⁸ESSIC-NASA GSFC ⁹Michigan Technological University

Photo: Simon Carn

GMAC- 20 May 2015

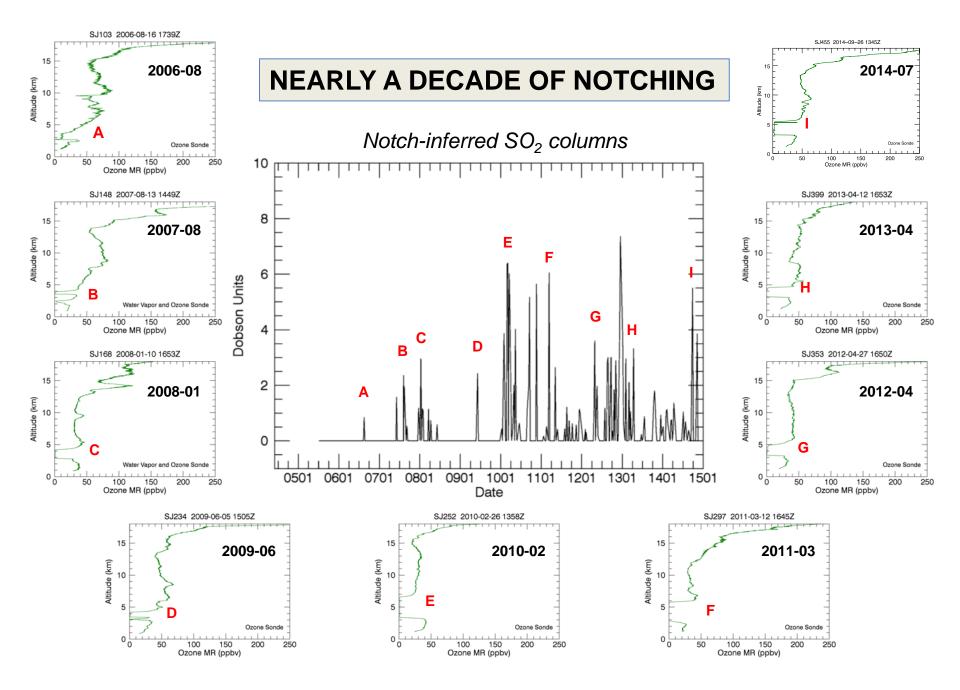

The Ticosonde opportunity

The NASA Ticosonde project has been launching ozone (ECC) and water vapor (CFH) balloon sondes since 2005 at 3 sites around San José, Costa Rica



The San José metro area lies just to the west of Volcán Turrialba (3480 m) which became active again in the mid-1990s.

Beginning in 2006, we began to see from time to time ozone profiles with distinct notches, mostly below 5 km



It seemed likely that these notches were caused by volcanic plume SO_2 entering the ozone sonde and causing interference of the O_3 detection

OUTLINE of the TALK

- History of SO₂ notching of Ticosonde ozone profiles
- Dual-sonde profiling technique for SO₂
- The dual-sonde program in Costa Rica since 2013
- Inter-comparison with single-sonde notch interference method
- Sample comparisons to two satellite retrievals
- Validation opportunities and challenges
- Summary and science questions

Ticosonde ozone sonde notch history

Year	All ozone sondes (single and dual)	# sondes with notches	Dual ozone sondes
from 7/2005	28	0	
2006	76	1	
2007	43	8	
2008	48	7	
2009	26	3	
2010	40	17	
2011	46	12	
2012	43	16	1
2013	42	18	6
2014	34	15	18
2015 (to present)	14	10	5
TOTAL	439	107	30

Data Access

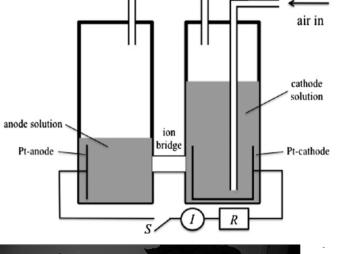
Ozonesondes (SHADOZ) at Aura Validation Data Center: <u>http://avdc.gsfc.nasa.gov</u> Dual ozonesondes at Valparaiso : <u>http://physics.valpo.edu/ozone/ticosonde_so2.html</u>

Dual ozone sonde SO₂ profiling

Measurement principle of the ECC ozonesonde

Ozone flowing through cathode upsets equilbrium between negative iodide ions and molecular iodine,

 $2\mathrm{KI} + \mathrm{O}_3 + \mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{KOH} + \mathrm{I}_2 + \mathrm{O}_2$


To re-establish equilibrium, 2 electrons must flow from anode to cathode, *viz.*,

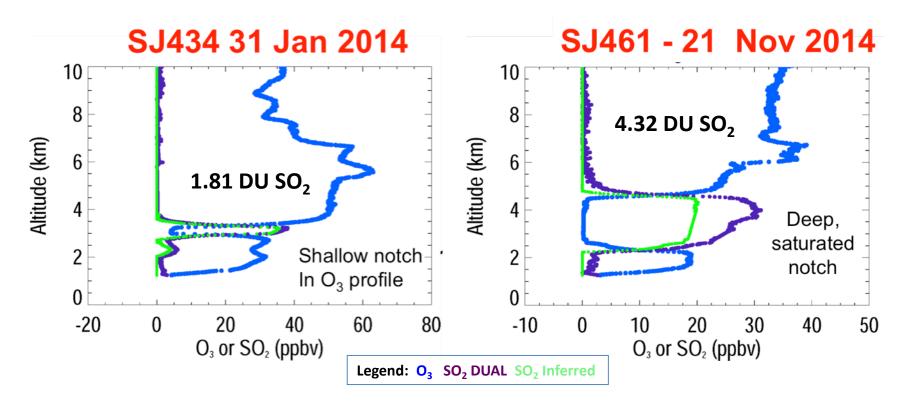
 $3I^- \rightarrow I_3^- + 2e^-$ (anode) $I_2 + 2e^- \rightarrow 2I^-$ (cathode)

Interference by SO₂

SO₂ short-circuits the anode current by reacting with water to yield a sulfate ion and two electrons, *viz.*,

 $SO_2 + 2H_2O \rightarrow SO_4^2 + 4H^+ + 2e^-$

Dual ozone sonde setup as used by *Morris et al.*, 2010. Note SO_2 filter on RH sonde.

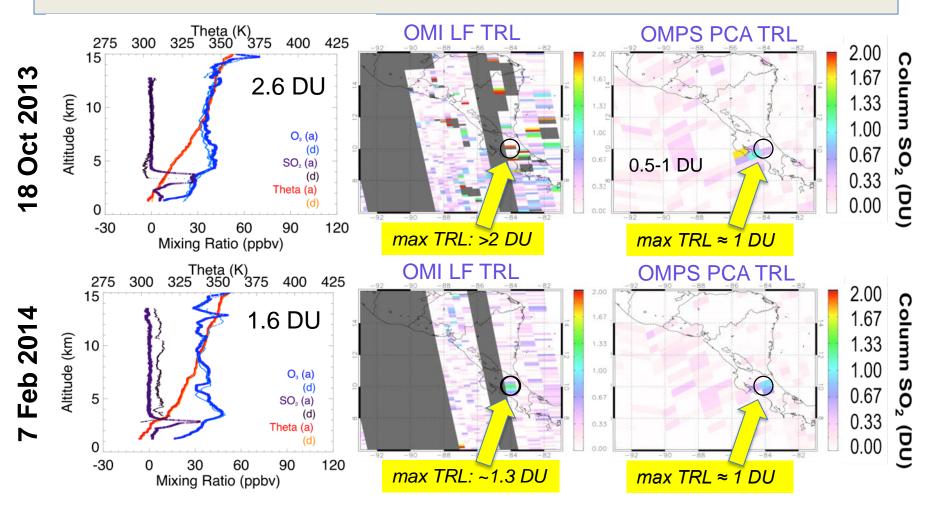

SO₂ measurement principle

 SO_2 interferes with the O_3 measurement on a one-toone basis. One approach then is to fly two ozone sondes side by side, one with an SO_2 scrubber filter on intake, and the second unfiltered. In simple terms (and as long as $[O_3] > [SO_2]$),

$$[SO_2] = [O3]_{filtered} - [O3]_{unfiltered}$$

Reference: Morris, et al., 2010, A balloon sounding technique for measuring SO2 plumes, J. Atmos. Ocean. Tech, 27, 1318-1330, doi: 10.1175/2010JTECHA1436.1

Dual-sonde difference vs. single-sonde notch inference method


Estimate of column SO_2 from shallow, unsaturated notch close to dual-sonde estimate

Unusual notch depth and its saturation lead to significant underestimates using both methods

NOAA GMD is developing a modified ECC board that will enable measurement of negative voltage excursions – eliminate zero truncation when $[SO_2] > [O_1]$

GMAC- 20 May 2015

Sample Comparisons of Dual Sonde columns to OMI LF and OMPS PCA lower trop (TRL) retrievals

OMI LF TRL: approaches dual sonde column; noisy and data loss in row anomaly OMPS PCA TRL: less noise, but lower resolution and significant underestimate

GMAC- 20 May 2015

SATELLITE VALIDATION Opportunities and Challenges

- Notch-inference SO₂ column measurements
 - validate Aura OMI LF and PCA retrievals, 2006-present
- Dual sonde SO₂ column measurements
 - validate OMI and OMPS (on Suomi-NPP) retrievals, 2013 present
 - 22 remaining dual sondes
 - Hope to validate TropOMI (summer 2016 launch)
- Challenges/Questions:
 - Saturated notches: Standard ECC cannot measure negative voltages, so restricted to [SO2] ≤ [O3] (testing new sonde from GMD)
 - Overcast: Reduces sample size, particularly in rainy season (June-October) (tighten up launch protocols; focus on dry season)
 - Sampling scale differences, sonde vs FOV: How representative are sonde samples? (plume dispersion modeling)

SUMMARY

- Frequent observations of SO₂ interference in ozone sondes at San José, Costa Rica, downwind of Volcán Turrialba
 - Notches in 107 of over 400 ozone profiles since July 2005
- Dual sondes unequivocally demonstrate that notches are due to SO₂
 - Notches in 19 of 30 dual sonde profiles since February 2012
- ONGOING and FUTURE WORK:
 - ✓ Continue single- and dual-sonde observations at Costa Rica
 - \checkmark Test GMD experimental board to extend range of SO₂ measurement
 - Complete validation of SO₂ retrievals with single- and dual-sonde observations
 - OMI 2006 to present
 - Suomi NPP 2012 to present
 - TropOMI in 2016?
- SCIENCE QUESTIONS:
 - How is plume dispersed and diluted between emission and sonde measurement several hours downstream?
 - Can we exclude the possibility that there is formation of sulfate particles in this time frame?