

Earth System Research Laboratory

Use of Solar Irradiance Measurements to Improve the Physical Parameterizations in the Rapid Refresh and High-Resolution Rapid Refresh Models

> Jaymes Kenyon Joseph Olson, John Brown, William Moninger, Eric James, Allison McCominskey, and Kathy Lantz

NOAA / Earth System Research Laboratory Boulder, Colorado

2015 Global Monitoring Annual Conference 19 May 2015

RAP and HRRR: Hourly-Updated Weather Forecast Models

ESRL RAP and HRRR Configurations

Model	Domain			rid Points	Grid Spacing		Vertical Levels		Pressure Top		Boundary Conditions		Initialized	
RAP	North America			58 x 567	13 km		50		10 hPa		GFS		Hourly (cycled)	
HRRR	CONUS			1799 x 1059	3 km		50		20 hPa		RAP		Hourly - RAP (no cycling)	
Model	Version	Ass		ilation	Radar DA		Radiatic LW/SW	on /	Microphysics		Convection Deep/Shallow		PBL	LSM
RAP	WRF-ARW v3.6.1+	G V	SI Hyl \R/Er	brid 3D- nsemble	13-km DFI		RRTMG/ RTMG	′R (a	Thompson- Eidhammer aerosol-aware)		G3 / GFO		MYNN	RUC 9-lev
HRRR	WRF-ARW v3.6.1+	G V	SI Hy AR/Er	brid 3D- semble	3-km 15-min LH		RRTMG RRTMG	/ 6 (a	Thompson- Eidhammer eerosol-aware)		None / GFO		MYNN	RUC 9-lev
Model	Horiz/Vert Advection	Sca Adve	ar tion	Upper- Dam	-Level 6 th ping Dif		Order fusion	F	Radiation Update		nd Use	MP Li	P Tend imit	Time- Step
RAP	5 th /5 th	Posit Defi	ive- nite	w-Rayleigh 0.2		Yes 0.12			20 min	MODIS Fractional		0.01 K/s		60 s
HRRR	5 th /5 th	Posit Defi	ive- nite	w-Rayleigh 0.2		Yes 0.25 (flat terr)			15 min	MODIS Fractional		0.07 K/s		20 s

ESRL RAP and HRRR Configurations

Model	Domain			id Points	Grid S	pacing	Vertical Levels		Pressure Top	Bour Cond	Boundary Conditions		Initialized	
RAP	North America			58 x 567	13 km		50		10 hPa	G	GFS		Hourly (cycled)	
HRRR	CONUS			1799 x 1059	3 km		50		20 hPa	R	RAP		Hourly - RAP (no cycling)	
Model	Version	A	simi	imilation R		Radar DA		on V	Microphysics	Convect Deep/Sha	ion llow	PBL	LSM	
RAP	WRF-ARW v3.6.1+	GS VA	Hyb R/En	orid 3D- semble	13-km DFI		RRTMG RTMG	/R Thompson- Eidhammer G (aerosol-awar		G3 / G	G3/GFO		RUC 9-lev	
HRRR	WRF-ARW v3.6.1+	GS VA	l Hyk R/En	orid 3D- semble	3-km 15-min LH		RRTMO	6/ G (a	Thompson- Eidhammer aerosol-aware)	None / G	None / GFO		RUC 9-lev	
Model	Horiz/Vert Advection	Scala Advect	ar Upper- tion Dam		Level	6 th Dif	Order fusion	F	Radiation Update	Land Use	MP Li	Tend mit	Time- Step	
RAP	5 th /5 th	Positi Defin	ve- te	w-Rayleigh 0.2		Yes 0.12			20 min	MODIS ractional		1 K/s	60 s	
HRRR	5 th /5 th	Positi Defin	ve- te	w-Rayleigh 0.2		Yes 0.25 (flat ter			15 min	MODIS Fractional 0.0		7 K/s	20 s	

Cloud Representation in a Model

- If model grid cells represented homogeneous volumes (in water vapor & temperature), only binary cloud fractions (0 or 1) would be needed
- Reality: grid cells represent ensemble averages, subgrid-scale variability exists, and fractional (non-binary) cloud coverage may exist

 Scientific Challenge #1: modeling fractional cloud coverage requires that we make assumptions regarding subgrid-scale variability

Cloud-Radiation Coupling

Some Historically Common Cloud "Overlap" Approximations:

- RRTMG scheme assumes a cloud overlap according to the Monte-Carlo Independent Column Approximation (McICA) (Pincus et al. 2003)
- Scientific Challenge #2: modeling cloud-radiation interaction requires additional assumptions

RAP / HRRR Cloud Representation: Recent Past

*RAP only

RAP / HRRR Irradiance Verification from GMD's SURFRAD / ISIS

- GMD's SURFRAD / ISIS measurements provide a unique model assessment capability:
 - (1) Directly quantify surface energy budget issues
 - (2) Conventional "surface" variables (e.g., 2-m temperature) are **diagnosed** in the model
 - (3) "Upper-air" variables verified against twice-daily radiosondes

Summer 2014: Excessive Surface Irradiance in RAP and HRRR

Summer 2014: Excessive Surface Irradiance in RAP and HRRR

Related Effect: Excessive Deep Convection in HRRR

4-h forecast of composite reflectivity (valid 0000 UTC 18 Jun 2014)

Composite reflectivity (dBZ)

Observed

Source: UCAR

Successful RAP / HRRR Bias Mitigation Strategies

- (1) Modify the RUC land-surface model (RUC-LSM)
 - Reduce vegetation wilting points
 - Prevent wilting of cropland areas (i.e., "parameterize" irrigation)
- (2) Improve the parameterization of subgrid-scale shallow cumulus

➔ and fully couple to radiation

- Develop Grell-Freitas-Olson shallow cumulus scheme
- Develop a supplemental cloud fraction (in PBL scheme) for passivephase ("forced") shallow cumulus and stratus clouds

RAP / HRRR Cloud Representation: Recent Past

*RAP only

RAP / HRRR Cloud Representation: New Approach

Results: Improved Low-Level Temperature Forecasts

2-m Temperature Bias (K), 12-h Forecasts, CONUS

Control (Unmodified)
w/ Improved Subgrid Clouds
w/ Improved Subgrid Clouds and Land Surface

~2-K reduction in late-afternoon warm bias; smaller diurnal bias variation

Results: Improved Cloud Representation

8-h forecasts of surface GHI (W m⁻²) valid 1700 UTC 20 May 2013

Results: Improved Cloud Ceiling Forecasts

selected ceiling reports versus 12-h ceiling forecasts (valid 2000 UTC)

kft (AGL)

Conclusions

- SURFRAD / ISIS measurements from GMD have facilitated RAP / HRRR model improvements
- New physical parameterizations will provide
 - (1) better RAP / HRRR solar irradiance and cloud ceiling forecasts
 - (2) better RAP / HRRR forecasts overall
 - (3) improved internal model physics
- Ongoing & future work will:
 - Consolidate disparate cloud schemes
 - Develop prognostic cloud representations
 - Improve "scale-aware" aspects for finer model grid spacing

