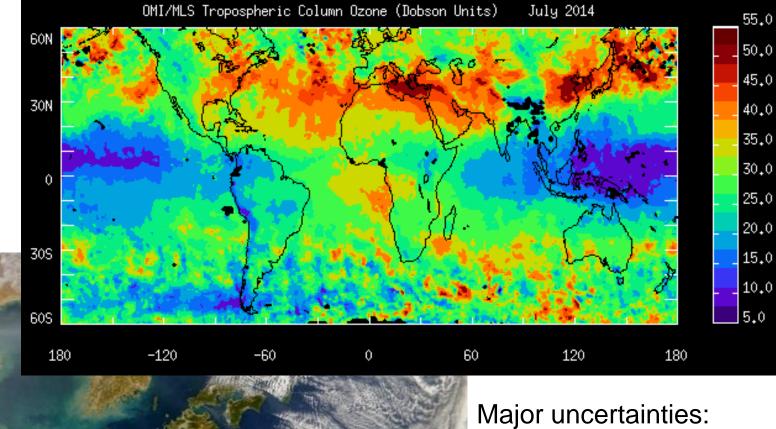
A New and Inexpensive Tool for Ozone, Aerosol, and AOD Vertical Profiling

Ru-Shan Gao¹, Jack Elston², Daniel Murphy¹, Irina Petropavlovskikh^{3,4}, John Ogren⁴

¹NOAA Earth System Research Laboratory, Chemical Sciences Division

²Black Swift Technologies, LLC, Boulder, CO

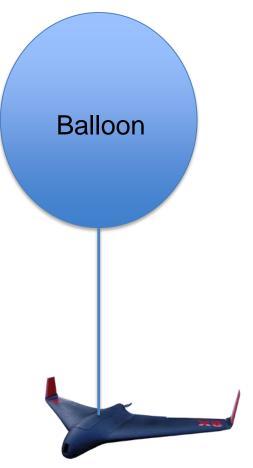
³Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO


⁴NOAA Earth System Research Laboratory, Global Monitoring Division

GMD annual conference, May 20, 2015

• Transport

- Vertical distribution
- Aerosol hygroscopicity
- Aerosol light absorption

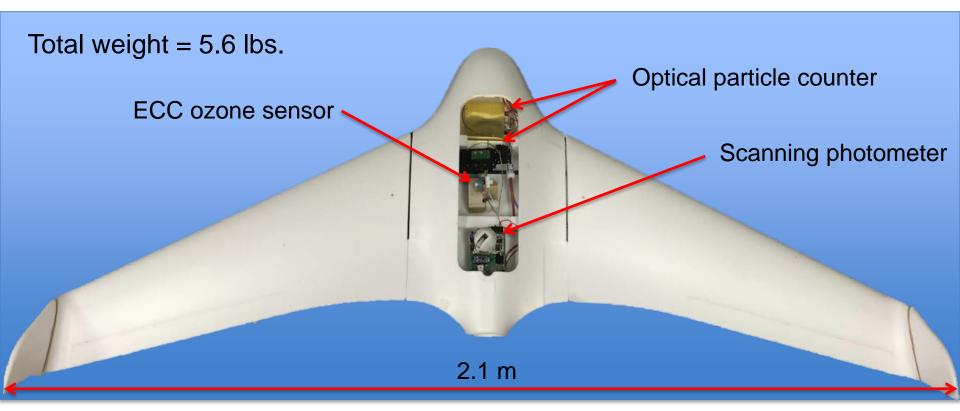

How to address these uncertainties:

• **Ideally**, global profiles (5 km) of O_3 , RH, aerosol, aerosol hygroscopicity and absorption properties, AOD, and AAOD are measured at high frequency (weekly, at least) with reasonable vertical resolution.

- **Realistically**, it is too difficult to do it right.
- □ Satellite: Little vertical info, no info on aerosol property
- □ Aircraft: Too expensive
- □ UASs: Too expensive, FAA limitation
- □ Non-recoverable balloon instruments: Too expensive

• New proposed approach for measurement tool Key criteria: Low equipment cost, low operation cost, and reliable measurements of known uncertainty.

Our new tool:

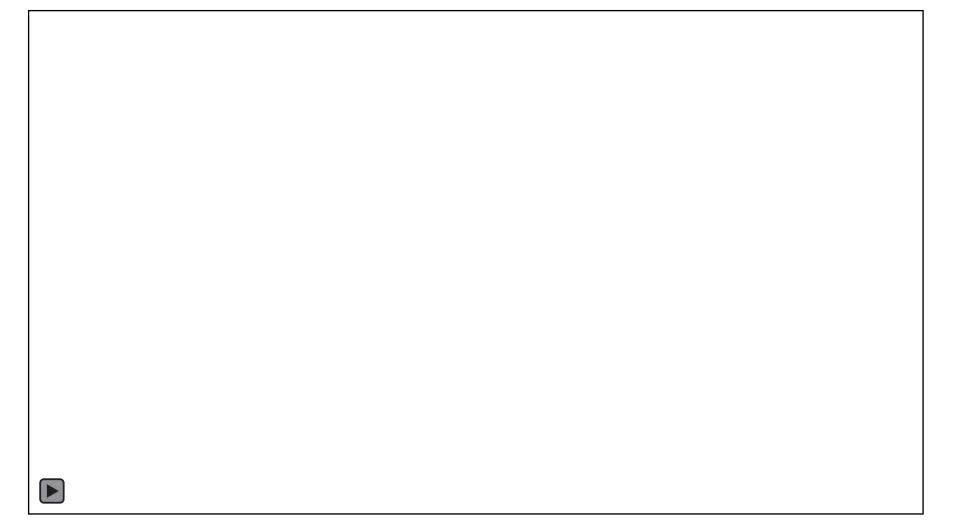


 Weather balloon based, < 6 lbs.
FAA regulation on small gliders might be less restrictive: Ease of operation

- Light and inexpensive instruments (\$Ks per instrument, "lose-able")
 - Low equipment cost
- Autonomously homing gliders or parafoils
 - Low operation cost (\$350 per launch)
 - 5-km ceiling for easy recovery

Instrumented auto-homing glider, SKYWALKER

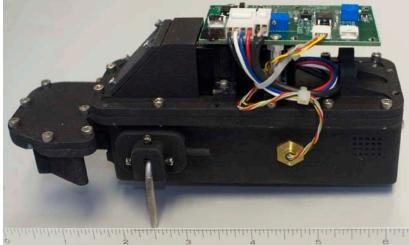
Instrumented auto-homing glider

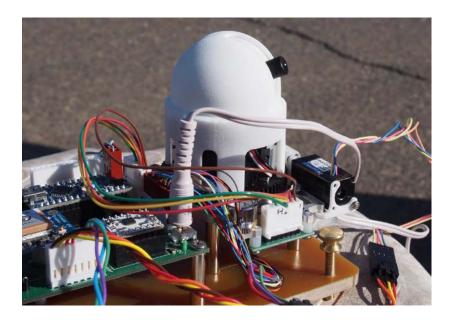

Flight control by Black Swift Technologies

Movie of the glider test

New instruments developed at NOAA/CSD

Printed Optical Particle Spectrometer (POPS)


- Single-particle detection
- 150 2500nm diameter range
- 800 g, 7 Watts
- Lose-able (~\$2500)


Gao et al.

Mini Scanning Aerosol Solar Photometer (Mini-SASP)

- 4 wavelength (460, 550, 670, 860 nm)
- 0.02 AOD detection limit
- 350 g, 2 Watts
- Lose-able (~\$1500)

Murphy et al.

New instruments under development at NOAA/CSD/GMD

Mini-Continuous Light Absorption Photometer

- Particle absorption detection
- 3 wavelengths (467, 528, 652 nm)
- Precision < 0.2 Mm⁻¹ (estimated)
- 1000 g, 10 Watts (estimated)
- Lose-able

Gao, Ting, et al.

Other possible instruments:

- Condensation Nuclei Counter (CNC)
- Filter-based Aerosol Chemical Sampler
- Whole Air Sampler (WAS)
- NO₂, CO₂, CH₄, CO sensors

Two instrument packages so far:

- Package 1: Vertically resolved O₃ + Aerosols
- Deliverables:
 - \succ O₃ profile
 - Dry aerosol AOD (derived) profiles
 - RH effect: AOD/(Dry aerosol AOD)
 - Aerosol-weighed RH

• All instruments are robust and uncertainties can be quantified

Package 2: Aerosol optical and physical composition.

- Deliverables:
 - Aerosol particle distribution
 - Aerosol Abs. Coef. profiles
 - Aerosol AOD (derived)
 - Dry AAOD (derived)
 - CLAP is a proven instrument

Application:

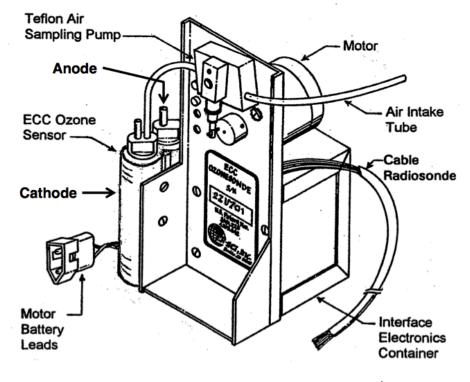
The Global Ozone and Aerosol profiles and Aerosol Hygroscopic Effect and Absorption optical Depth (GOA²HEAD) Network Initiative

Ru-Shan Gao¹, Jim Elkins², Greg Frost¹, Si-Wan Kim¹, Allison McComiskey², Daniel Murphy¹, John Ogren², Irina Petropavlovskikh², Karen Rosenlof¹

> ¹Chemical Sciences Division ²Global Monitoring Division Earth System Research Laboratory Boulder, Colorado

Thank you for flying with GOA²HEAD

10000


Instruments (commercially available):

Ozone (O_3)

Pressure

Temperature

Relative humidity (RH)

DMT ECC ozonesonde; 250 g, ~\$850

New instruments developed at NOAA/CSD

Open-pass aerosol extinction sensor

- 450 or 670 nm
- Estimated 1 Mm⁻¹ sensitivity
- Closable to zero signal

Gordon and Murphy

Two instrument packages so far:

Package 1: O₃, RH, dry aerosol, AOD

Instruments: ECC O₃ (250 g), p, T, RH,(~100 g), POPS w/ dryer attachment (dry aerosol number density and size distribution, 800 g), mini-SASP (AOD, 350 g)

- Deliverables:
 - O₃, dry aerosol, and AOD profiles
 - Aerosol-weighed RH
 - Dry aerosol AOD (derived)
 - AOD
 - RH effect: AOD/(Dry aerosol AOD)

• All instruments are robust and uncertainties can be quantified

Package 2: Ambient aerosol and aerosol absorption coef.

 Instruments: ABS (dry aerosol absorption coefficient; miniaturized GMD CLAP instrument, or "mini-CLAP"), POPS (aerosol number density and size distribution), radiosonde (p, T, RH)

- Deliverables:
 - Aerosol and AAC profiles
 - Aerosol AOD (derived)
 - Dry AAOD (derived)
- CLAP is a proven instrument