Observations of Relative Humidity Effects on Aerosol Light Scattering in the Yangtze River Delta of China

Zhang Lu¹, Sun Junying¹, Shen Xiaojing¹, Zhang Yangmei¹, Che Haochi¹, Ma Qianli², Zhang Yiwen¹, Zhang Xiaoye¹, John A. Ogren³

¹ Key Laboratory of Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing100081, China

² LinAn Regional Atmosphere Background Station, LinAn 311307, China ³ Earth System Research Laboratory, NOAA, Boulder, CO, USA

Questions

- What are the hygroscopic enhancement factors for scattering properties "f(RH)" in Yangtze River Delta?
- 2. Which chemical species are the main factors that determine f(RH)?
- 3. What is the influence of f(RH) on aerosol direct radiative forcing?

The visibility decrease of the Yangtze River Delta during 1980-2009. -0.3 ± 0.013 km/yr (Zhang et al., 2012)

Yangtze River Delta:

Economy Population Vehicles Emissions of NO_x, SO₂, VOC...

LinAn Regional Atmosphere background station

✓WMO/GAW regional station ✓ 30.3° N, 119.73° E, Hangzho LinAn 138 m a.s.l. 38N 34N bamboo forests and Nanjing 🔾 paddy rice fields /Suzhou Shanghai LinAn represents the 30N Hangzhou background conditions of the Yangtze River 26N Delta 110F 115E 120F 125E

The humidification system

Time series and average hygroscopic enhancement factor

The Relationship of f(RH) and Chemical Composition

 ✓ f(RH) increases with inorganic mass fraction, but decreases with organic mass fraction
 ✓ f(RH) shows clearer relation with Nitrate fraction than sulfate fraction

Importance of Nitrate

Nitrate plays a more important role than sulfate in the determination of the magnitude of f(85%) at LinAn.

Compared with Quinn et al. (2005)

Steepness index η

- ✓ η = (4/3)^{b-1} 1
 ✓ η only matters with b, f(RH)=1+a·RH^b
 ✓ An indicator of the steepness of humidograms
- ✓ η decreases with the increase of NO_3^- ;

Nitrate also plays an important role in the steepness of humidograms in our study at LinAn.

The **Red lines** represent the regression line, the fitting equation was $f(RH)=1+a\cdot RH^{b}$ The Blue lines represent the tangent line at RH 60%, and 80% 40 10 35 30 Sulfate(%) ΞL 6 25 20 15 2 10 0 0 10 20 30 40

The scattering plot of the mass fraction of NO_3^- and η

Nitrate (%)

Classified by trajectory

Sensitivity of the direct radiative forcing of different aerosols to f(RH)

- The increasing pattern of the dependence of TOA radiative forcing on relative humidity basically follow the increase of f(RH)
- At 85% RH, the TOA radiative forcing increased by 47% compared to that at dry conditions ;

The dependence of TOA radiative forcing on relative humidity for various periods.

- 1. On average, aerosol light scattering in March in LinAn was <u>58% higher</u> at 85% RH.
- 2. Aerosol uptake of water decreased with increasing organic mass fraction.
- **3.** Nitrate played an important part in both the magnitude and shape of f(RH) during our study.
- 4. At 85% RH, the direct radiative forcing increased by as much as 47% due to the aerosol hygroscopicity.

Acknowledgments

This work was supported by

- National Basic Research Program of China (2011CB403401),
- National Natural Science Foundation of China (41175113),
- China International Science and Technology Cooperation Project (2009DFA22800),
- key project of CAMS (2013Z007, 2013Y004)
- the CMA Innovation Team for Haze-fog Observation and Forecasts.

Thanks!

In order to estimate the sensitivity of the forcing to different RHs for various aerosol types (locally-polluted, northerly-polluted and dust-influenced aerosols), the ratio of direct aerosol radiative forcing ΔF_R at a defined RH to that at dry condition was calculated:

$$\frac{\Delta F_{\rm R}({\rm RH})}{\Delta F_{\rm R}({\rm dry})} = \frac{(1 - R_{\rm s})^2 \beta({\rm RH}) \alpha_{\rm s} f({\rm RH}) - 2R_{\rm s} \alpha_{\alpha}}{(1 - R_{\rm s})^2 \overline{\beta}({\rm dry}) \alpha_{\rm s} f({\rm dry}) - 2R_{\rm s} \alpha_{\alpha}}$$
(8)

Parameters used in Eq. (8) were R_s=0.15, and α_a =0.3 m²·g⁻¹ (Wang et al., 2012;Hand and Malm, 2007). The mass scattering efficiency α_s is 2.76 m² g⁻¹, which is derived from the slope of a linear regression of the measured scattering coefficients and the calculated PM10 mass concentrations based on TDMPS and APS measurement (see Fig. 13); the high mass scattering efficiency is explained by the high ratio of PM₁ to PM_{10} mass at this site (average 0.81). The average upscatter fraction $\overline{\beta}$ was calculated as $\overline{\beta}=0.0817+1.8495b-2.9682b^2$ (Delene and Ogren, 2002). The sensitivity of direct radiative forcing to RH for various aerosol types were shown in Fig. 14. As is shown in the figure, the variation of $\Delta F_R(RH)/\Delta F_R(dry)$ with RH was in accordance with the variation of humidograms. The f(RH) was the largest during the northerly-polluted period, correspondingly, the effects of RH on aerosol radiative forcing during this period was the largest. The same was true for the locally-polluted period and the dust-influenced period. Since b decreases with increasing RH, this correspondence also demonstrated the vital role f(RH) played in direct forcing enhancement. At 85% RH, the average ratio was 1.47, i.e. the direct radiative forcing