Multiyear Measurements of Aerosols at Storm Peak Laboratory, a Colorado Mountain-Top Site

A.G. Hallar¹, R. Peterson¹, E. Andrews^{2,3}, J. Michalsky^{2,3}, I.B. McCubbin¹, J. Ogren³, N. Molotch⁴

¹Storm Peak Laboratory, Desert Research Institute, Gannet.Hallar@dri.edu ²Cooperative Institute for Research in Environmental Sciences CIRES, University of Colorado ³NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO 80305 ⁴INSTAAR, University of Colorado, Department of Geography

Aerosol, Cloud, and Trace Gases Research and Education Facility

Located on Steamboat Springs Ski Resort Elevation: 3220 m (10,530 ft) Pressure: ~ 690 mb In cloud ~25% of time in winter Mixed Phase Clouds 9 Person Bunkhouse Full Kitchen, Running Water Facility and Guest Instruments Wet Chemistry Lab

National

Climate Emission Drivers

Emitted Compound	Radiative Forcing by Emissions and Drivers	Level of Confidence
CO ₂		Very High
CH ₄		High
Aerosols and precursors Mineral Dust Sulphate Organic Carbon Black Carbon		High
Cloud adjustments due to aerosols		Low
Man's impact relative to the year 1750	2011	— High
	1980	High
	1950	Medium
	-1 0 1 2 3 Radiative Forcing relative to 1750 (W m ²)	ipcc

INTERGOVERNMENTAL PANEL ON Climate change

Framework

Increasing Wildfires in Western U.S.

Wildfire activity strongly associated with spring snowmelt timing, which is sensitive to changes in temperature.

Source: Westerling et al., Science 2006

Increasing Dust in Western U.S.

Phoenix, AZ dust storm in July 2012.

Photograph by Ross D. Franklin, AP

Source: Center for Snow & Avalanche Studies

Neff et al., 2008; Nature Geoscience

"dust load levels increased by 500% above the late Holocene average following the increased western settlement of the U.S. during the 19th century. ...caused by the expansion of livestock grazing in the early 20th century."

Painter et al., 2007, Nature

Frequency of dust deposition and radiative forcing doubled when the Colorado Plateau experienced intense drought.

Instrument at Storm Peak Laboratory

Visible Multifilter Rotating Shadowband Radiometer (vis-MFRSR) USDA monitoring network Data from 1999-2013 Calibrated using Langley plots (Michalsky et al. 2001) Cloud screening (Michalsky et al., 2013) Daily AOD calculated from measurements that passed cloud screening

TSI integrating nephelometer (Model 3563, St. Paul, Minnesota) Data from 2011-2014 Calibrated with particle-free air and CO_2 Zero checks on filtered air were performed hourly

 $\begin{array}{l} \textbf{\texttt{Angström Exponent}} \\ \alpha_{\text{Inst}} = \ln(\underline{\textbf{sp}}_{,2}/\underline{\textbf{sp}}_{,1})/\ln(\underline{\textbf{1}}/\underline{\textbf{2}}) \end{array} \end{array}$

MFRSR 1=500 nm, 2=870 nm; Nephelometer 1=450 nm, 2=700 nm.

Seasonality of AOD at Storm Peak Laboratory 1999-2013

Fires observed at Storm Peak Laboratory

Start Time (UTC)	End Time (UTC)		MFRSR Data	Nephelometer Data Available
(0.0)	()		Available	
FIRE EVENT		Origin		
July 27, 2000	August 6, 2000	NW US 1	Х	
June 15, 2002	July 10, 2002	Hayman	Х	
July 30, 2002	Aug 3, 2002	AR,OR, CA	Х	
Sept 4, 2006	Sept 9, 2006	CA	Х	
Aug 29, 2009	Sept 3, 2009	Station Fire	Х	
June 4, 2011 0700	June 8, 2011 0000	Wallow	Х	Х
June 30, 2012 0700	July 5, 2012 0700	Waldo/		Х
		High Park		
Aug 10, 2012 0700	Aug 18, 2012 0700	NW US 2		X
Sept 21, 2012 0700	Sept 23, 2012 0700	NW US 3	Х	Х

Identified by MODIS - Val Martin et al., ACP, 2013

Observation of Fires at Storm Peak Laboratory 1999-2013

Observation of Fires at Storm Peak Laboratory 2011-2013

Dust observed at Storm Peak Laboratory

Start Time	End Time		MFRSR	Nephelometer
(UTC)	(UTC)		Data	Data Available
			Available	
DUST EVENT				
April 15, 2001 1200	April 16, 2001 1200	Asian	X	
April 27, 2006	May 1, 2006	Asian	X	
Regional Events		Wind Dir.		
		at CSAS		
April 19, 2007 1900	April 20, 2007 0700	201	X	
April 16, 2008 1900	April 17, 2008 0700	219	X	
April 4, 2009 0500	April 5, 2009 0700	206	X	
April 13, 2010 0800	April 13, 2010 1300	188	X	
May 22, 2010 0900	May 24, 2010 1500	192	X	
April 22, 2011 2200	April 24, 2011 0000	258		Х
May 1, 2011 1200	May 4, 2011 0600	279		Х
May 5, 2011 0900	May 11, 2011 0600	206	X	Х
May 27, 2011 1800	May 29, 2011 1200	243		Х
March 7, 2012 0900	March 8, 2012 0900	197		Х
March 20, 2012 0900	March 22,2012 0000	193		Х
March 27, 2012 1800	March 29, 2012 1200	207		Х
April 2, 2012 2000	April 3, 2012 1000	198		Х
April 7, 2012 1800	April 11, 2012 1400	201		Х
May 20, 2012 0000	May 23, 2012 1400	213		Х
May 24, 2012 1400	June 1, 2012 0000	217*		Х
May 25, 2013 0000	May 25, 2013 1800	207		Х

* Average of 3 consecutive dust events at CSAS

Observation of Dust at Storm Peak Laboratory 1999-2013

Observation of Dust at Storm Peak Laboratory 2011-2013

Summary

Dataset highlights wide scale implications of a warmer drier climate on aerosol loading in the Western U.S.

Spring AOD is dominated by dust aerosols

Summer AOD dominated by aerosols associated with biomass-burning

Supported with nephelometer measurements at surface

Median contribution to spring and summer AOD by dust and biomass-burning is comparable.

Summer AOD correlates with large scale aridity

Acknowledgements

Storm Peak Laboratory/Desert Research Institute:

Dr. Melanie Wetzel, Dr. Doug Lowenthal, P. Tyson Atkins, Dr. Randy Borys

References:

- Livneh et al., 2013: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions. *J. Climate*, **26**, 9384– 9392.
- Michalsky, J. J., et al.: Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs. *Journal of Geophysical Research: Atmospheres* 106.D11 (2001): 12099-12107.
- Michalsky, J., and B. LeBaron (2013), Fifteen-year aerosol optical depth climatology for Salt Lake City, J. Geophys. Res. Atmos., 118, 3271–3277, doi: 10.1002/jgrd.50329
 Val Martin, M., et al. "A decadal satellite analysis of the origins and impacts of smoke in Colorado." *Atmospheric Chemistry and Physics* 13.15 (2013): 7429-7439