Characterizing Carbonaceous Aerosols Transported to the Canadian Arctic: Attribution of Emission Sources of the Black Carbon at Alert

Lin Huang, S. Sharma, W. Zhang, R. Leaitch, J. Brook, ASTD, Environment Canada
K. He, F. Duan, F. Yang, Tsinghua University, Beijing, China

Rationale:

- Linking aerosol carbon mass (e.g., black carbon mass) with its optical properties;
- Characterizing & attributing major emission sources of Black carbon;
Measurements at Alert (WMO_GAW Observatory)

Bi-weekly/weekly integrated quartz filters collected for
- Elemental carbon (BC mass) and organic carbon contents
- Related C isotopic compositions

In Situ measurements of light absorption coefficient (eBC)
- Hourly and weekly averaged values can be derived

Lin Huang et al, GMAC2015
Elemental Carbon (BC mass) & light absorption (BC optical property) at Alert

Lin Huang et al, GMAC2015
Inter-Annual Variation of Mass Absorption Coefficient (MAC) at Alert

\[MAC = \frac{\sigma_{ap}}{C} \] (absorption per unit BC mass)

- MAC values during winter-spring seasons were pretty much constant as well as independent on particle size

\[Modeled \ MAC_{BC} \ (at \ 550 \ nm) \ for \ uncoated \ sphere: \ 6.4 \ m^2/g, \ Adachi \ et \ al. \ [2010] \]
Elemental Carbon (BC mass) Measurements at Alert in comparison with the measurements at Beijing

Lin Huang et al, GMAC2015
$\delta^{13}C$ values of Possible Sources of Carbonaceous PM in the Earth System

- Fossil fuels
 - ~ - 40‰
 - ~ - 28‰
 - ~ - 24‰

- Biomass burning
 - ~ - 12‰

- C$_3$ Plants
 - ~ - 26‰

- C$_4$ Plants
 - ~ - 26‰

- Mantle Carbon
 - ~ - 5‰

- Carbonates (soil or sea salt)
 - ~ 0‰

Global & Regional 3FF Consumptions* & the mean $\delta^{13}C$ Values

- Global (-28.6‰)
 - 42% Gas (-40‰)
 - 19% Liquids Fuel and Gas (-28‰)
 - 40% Coal (-24‰)

- North America (-29.3‰)
 - 34% Gas (-40‰)
 - 22% Liquids Fuel and Gas (-28‰)
 - 44% Coal (-24‰)

- Euro-Rus (-31.2‰)
 - 29% Gas (-40‰)
 - 36% Liquids Fuel and Gas (-28‰)
 - 35% Coal (-24‰)

- Russia (-32.9‰)
 - 28% Gas (-40‰)
 - 21% Liquids Fuel and Gas (-28‰)
 - 51% Coal (-24‰)

- Asia (-26.1‰)
 - 66% Gas (-40‰)
 - 27% Liquids Fuel and Gas (-28‰)
 - 6% Coal (-24‰)

- China (-25.0‰)
 - 81% Gas (-40‰)
 - 17% Liquids Fuel and Gas (-28‰)
 - 2% Coal (-24‰)

Lin Huang et al, GMAC2015
$\delta^{13}C$ values of Possible Sources of Carbonaceous PM in the Earth System

Possible Sources of Carbonaceous PM in the Earth System:

- **Fossil fuels**
 - ~-40‰
 - ~-28‰
 - ~-24‰

- **Biomass burning**
 - ~-12‰

- **C$_3$ Plants**
 - ~-26‰

- **C$_4$ Plants**
 - ~-12‰

- **Carbonates (soil or sea salt)**
 - ~0‰
 - ~-5‰

- **Mantle Carbon**
 - ~5‰

^{14}C is needed to separate modern C from fossil C!!

Global (-25.9‰)

- **North America** (-26.2‰)
 - Liq_fuel_D+G (-28‰)
 - Coal (-24‰)

- **Euro-Rus** (-26.2‰)

- **Asia** (-25.2‰)

- **Russia** (-25.7‰)

- **China** (-24.7‰)

Lin Huang et al, GMAC2015
Seasonal Variations of mean BC mass and its $\delta^{13}C$ at Alert

- Anti-correlation between $\delta^{13}C$ and BC mass in seasonal variation;
- Relatively negative values (<-28 permil) in $\delta^{13}C$ during winter-spring seasons, suggesting that gas flaring contributions to the BC are important at the Canadian arctic.
Opposite seasonal patterns in $\delta^{13}C$ at Alert & Beijing suggests that the aerosol BC transported to the Canadian arctic is not significantly influenced by the emissions sources from East Asia.
Inter-annual Changes of Seasonal means in $\delta^{13}C$ of “BC” mass at Alert (vs. Beijing, China)

- Changes in $\delta^{13}C_{EC}$ leaning toward more positive values during winter-spring seasons at Alert are observed;
- Satellite observations suggest that decreasing in gas flaring likely contributes to the changes;
- ^{14}C measurements need to be done to further confirm biomass burning /bio-fuel contributions.
Top 20 gas flaring countries

Source: NOAA satellite data; NOAA is currently processing 2013 data and working to calibrate the data to derive estimates of flare volumes. However, a number of circumstances, including the use of new VIIRS infrared technology for more accuracy, have delayed the process. The World Bank-led Global Gas Flaring Reduction Partnership and NOAA are working to make 2013 gas flare volume estimates available as soon as possible.

World Bank Group
Summary

- Opposite seasonal patterns in $\delta^{13}C$ at Alert & Beijing suggests that the surface aerosol BC transported to the Canadian arctic is not significantly influenced by the emissions sources from East Asia;

- Changes in $\delta^{13}C$ leaning toward more positive values during winter-spring seasons could be caused by either decreasing the fraction with relatively negative $\delta^{13}C$ values (e.g., gas flaring) or increasing the fraction with relatively positive $\delta^{13}C$ values (e.g. coal combustion or biomass burning);

- Satellite observations suggest that gas flaring activities in Russia, Kazakhstan and some other previous Soviet-Union countries have been decreased by ~ 30%, which may explain the positive trend in $\delta^{13}C$;

- The inter-annual variation of Mass Absorption Coefficient (MAC) & Absorption Angstrom Exponent (AAE) suggest that not much has been changed in optical properties over the period (2007-2011) and that the fraction of biomass burning contribution has not likely increased (no increasing trend in AAE observed). ^{14}C measurements need to be done to further confirm biomass burning contribution.
Thank you!
Elemental Carbon Contents at Alert vs. Fossil Fuel Consumption (2004 - 2012)

Lin Huang et al, GMAC2015
Inter-Annual Variation of Absorption Angstrom Exponent at Alert

\[\bar{\lambda}_{\text{abs}} = - \frac{\log \left(\frac{\text{MAC}(\lambda_1)}{\text{MAC}(\lambda_2)} \right)}{\log(\lambda_1/\lambda_2)} \]

Lin Huang et al, GMAC2015