

Comparison of seasonal cycles of tropospheric ozone from three Chemistry-Climate Models (CCMs) with measurements

Focus on Trinidad Head - upwind of U.S.

David Parrish

CIRES University of Colorado

NOAA/ESRL Chemical Sciences Division

Boulder, Colorado USA

Comparison of seasonal cycles of tropospheric ozone from three Chemistry-Climate Models (CCMs) with measurements

Focus on Trinidad Head - upwind of U.S.

Goal:

Characterize systematic variation of tropospheric O_3 concentrations with as few parameters as possible to provide metrics for comparing models with measurements

Acknowledgements:

Sam Oltmans, Bryan Johnson, Michael Ives, Irina Petropavlovskikh – NOAA/ESRL/GMD

- Results from 3 CCMs:
 - J.-F. Lamarque NCAR CAM-chem
 - V. Naik, L. Horowitz NOAA GFDL-CM3
 - D. T. Shindell GISS-E2-R

Free running meteorology with similar emissions

Used for latest IPCC Report AR5

Related models calculate "background" O₃ for air quality policy formulation

Seasonal cycles of O_3 in the MBL

Seasonal cycles of O_3 in the MBL

Model Pacific MBL U.S. west coast 60 1988-2011 0₃ (ppb) 40 20 1/1/95 1/1/90 1/1/00 1/1/05 1/1/10

21 years of monthly averages; Trinidad Head and other west coast sites

Monthly mean data and model results

Measurements selected for high onshore winds

All model results included – 250 km west

Detrend, Calculate Fourier Transform

Seasonal cycles of O_3 in the MBL

Detrend, Calculate Fourier Transform

Seasonal cycles of O_3 in the MBL

Seasonal cycles of O_3 in the MBL

- 5 parameters define average seasonal cycle:
- Annual average (Y_0) 32.0 ± 0.4 ppb
- 2 magnitudes (A₁, A₂)
 5.7 ± 0.6, 3.5 ± 0.6 ppb
- 2 phases (ϕ_1, ϕ_2) 0.48 ± 0.11, -2.30 ± 0.17 radians
- RMSD = 3.2 ppbv

Provide basis for quantitative comparisons

Seasonal cycles of O_3 in the MBL

- 5 parameters define average seasonal cycle:
- Annual average (Y_0) 52.8 ± 0.3 ppb
- 2 magnitudes (A₁, A₂)
 6.7 ± 0.4, 4.2 ± 0.4 ppb
- 2 phases (ϕ_1, ϕ_2) 0.53 ± 0.06, -1.89 ± 0.09 radians
- RMSD = 2.0 ppbv

Provide basis for quantitative comparisons

Seasonal cycles of O_3 in the MBL

Trinidad Head:

- 2nd harmonic is large relative to fundamental; secondary maximum in fall
- Models overestimate MBL baseline O₃ by 10-21 ppb (30-65%)
- Relative contributions of fundamental and second harmonic differ widely
- Spatial resolution of models may affect comparisons.

Seasonal cycles of O_3 in the MBL

Question:

What causes the 2nd harmonic?

What causes the 2nd harmonic?

O₃ seasonal cycle

Only fundamental and 2nd harmonic significant in measurements and all 3 models.

Similar to Trinidad Head, except 6 months phase difference

What causes the 2nd harmonic?

Photochemical destruction drives O3 seasonal cycle in MBL

j_{O3}(¹D) seasonal cycle

Wilson, S. R. (2014), *Atmos. Chem. Phys. Discuss., 14*, 18389–18419.

What causes the 2nd harmonic?

Photochemical destruction drives O3 seasonal cycle in MBL

j_{O3}(¹D) seasonal cycle

Only fundamental and 2nd harmonic significant.

 2^{nd} harmonic exactly out of phase with that of O₃

Wilson, S. R. (2014), *Atmos. Chem. Phys. Discuss., 14*, 18389–18419.

Seasonal cycles of O_3 in the MBL

Question:

Is the seasonal cycle different in the free troposphere?

Altitude dependence of seasonal cycles

Hypothetical Picture:

Stratospheric influence dominates in upper FT – spring seasonal max

Photochemical production dominates in lower FT – May-June seasonal max

Photochemical destruction dominates in MBL – summer minimum, late winter seasonal maximum

Altitude dependence of seasonal cycles

Hypothetical Picture:

Model results do not fit this hypothetical picture:

No strong shift in seasonal cycle above MBL

Altitude dependence of seasonal cycles

Hypothetical Picture:

Model results do not fit this hypothetical picture:

No strong shift in seasonal cycle above MBL

 O_3 sharply

Altitude dependence of seasonal cycles

Hypothetical Picture:

- Model results do not fit this hypothetical picture:
- No strong shift in seasonal cycle above MBL
- No sharp reduction in O₃ within MBL

O₃ sharply reduced in MBL

Altitude dependence of seasonal cycles

Hypothetical Picture:

Model results do not fit this hypothetical picture

No strong shift in seasonal cycle above MBL

No sharp reduction in O₃ within MBL

2nd harmonic confined to MBL

Altitude dependence of seasonal cycles

Hypothetical Picture:

- Model results do not fit this hypothetical picture
- No strong shift in seasonal cycle above MBL
- No sharp reduction in O₃ within MBL
- 2nd harmonic term of seasonal cycle present throughout troposphere

Summary:

- A 2nd harmonic term is a ubiquitous feature of the O₃ seasonal cycle in the MBL – measurements and models – but absent in free troposphere
- Models (at least these 3 CCMs) overestimate MBL O_3 by 30-65%, and fail to reproduce other aspects of the seasonal cycles

Models poorly describe marine boundary layer dynamics

Seasonal cycles of O_3 in the

All sites have a late winter to early spring maximum and a summer minimum

Highest ozone at northern mid-latitudes, lowest in tropics

Quantify and Compare measurements and models Northern Hemisphere month Northern Hemisphere month

- All sites have a late winter to early spring maximum and a summer minimum
- Highest ozone at northern mid-latitudes, lowest in tropics
- Models reproduce seasonal cycles reasonably well in the marine boundary layer

