The Airborne Tropical Tropopause Experiment

The NASA Airborne Tropical Tropopause Experiment (ATTREX) is a five-year project using the NASA Global Hawk UAS to study transport and chemical processes in the Tropical Tropopause Layer (TTL) over the Pacific Ocean. The TTL, particularly over the western Pacific, is the principal gateway for air that is transported from the troposphere into the stratosphere.

The goals of the ATTREX mission include investigating:

- The role of stratospheric water vapor in Earth’s energy budget and climate
- Dehydration of tropospheric air entering the stratosphere
- The formation processes, microphysical properties, and climate impact of TTL cirrus

Primary deployments were:

- January - March 2013: Dryden Flight Research Center, California (Central and Eastern Pacific)
- Jan - Mar 2014: Andersen AFB, Guam (western Pacific)

ATTREX achieved 184 hours sampling in the TTL, more than 34 hours in TTL cirrus

Dehydration in the TTL

Reduction of the H2O mixing ratio to the minimum saturation mixing ratio with respect to ice encountered during an air parcel's trajectory is assumed in many large-scale models. This assumption does not account for a number of possible inefficiencies in the TTL microphysical dehydration processes and leads to a dry bias in the value of H2O entering the stratosphere. These inefficiencies include:

- Supersaturation with respect to ice required to nucleate cloud ice crystals
- Competition between the time required for the growing ice crystals to take up the excess humidity and temperature changes in the air parcel
- Competition between sedimentation of ice crystals (removal) and sublimation of ice crystals as air parcel temperature varies

Measured H2O in the LMS consistently higher than the minimum H2Omix along trajectory

Dehydration inferred from the minimum saturation mixing ratio produces a dry bias of ~30% relative to the measured H2O mixing ratios in the LS

This is similar to the 40-50% dry bias found by Liu et al. (2010) comparing reanalysis-based Lagrangian trajectories to MLS observations

The inefficiency is probably larger than 30% when small-scale wave effects on temperature are included in the trajectory analysis (e.g., Kim and Alexander, 2013)

The IWC–Q relationship in TTL cirrus clouds

The IWC–Q relationship in TTL cirrus clouds is used to relate satellite observations of clouds to the cloud IWC, an important parameter in global climate models which directly affects the cloud net radiative forcing.

ATTREX cirrus cloud observations

- In the temperature ranges < 190 K and 190 – 200 K, the dominant fraction of the size distribution resides in Dp < 15 µm, although a shift toward larger sizes with increasing temperature is observed.
- Ice crystal mass is also concentrated in small sizes (Dp < 35 µm) at these temperatures, which has implications for dehydration (see above)
- 90% of cirrus observations have N < 100/L, less than 0.05% have N > 1000/L
 - Will shift to slightly higher number with inclusion of FCDP small particles

The IWC–Q relationship in TTL cirrus clouds

- A power law fit to median values yields a reasonable consistent relationship
- Deviation at small values possibly due to a larger contribution from small particles
- Deviation parameterization falls between previous estimates (e.g., Heymsfield et al., 2005; Heymsfield et al., 2014)

The extensive ATTREX data set can be used to provide a robust IWC–Q parameterization for radiatively important TTL cirrus clouds

TTL cirrus ice water content (IWC) vs extinction (σ)

The IWC – σ relationship is used to relate satellite observations of clouds to the cloud IWC, an important parameter in global climate models which directly affects the cloud net radiative forcing.

ATTREX cirrus cloud observations

- In the temperature ranges < 190 K and 190 – 200 K, the dominant fraction of the size distribution resides in Dp < 15 µm, although a shift toward larger sizes with increasing temperature is observed.
- Ice crystal mass is also concentrated in small sizes (Dp < 35 µm) at these temperatures, which has implications for dehydration (see above)
- 90% of cirrus observations have N < 100/L, less than 0.05% have N > 1000/L
 - Will shift to slightly higher number with inclusion of FCDP small particles

The IWC–Q relationship in TTL cirrus clouds

- A power law fit to median values yields a reasonable consistent relationship
- Deviation at small values possibly due to a larger contribution from small particles
- Deviation parameterization falls between previous estimates (e.g., Heymsfield et al., 2005; Heymsfield et al., 2014)

The extensive ATTREX data set can be used to provide a robust IWC–Q parameterization for radiatively important TTL cirrus clouds

The NOAA Water Instrument

A two-channel, TDL-based hygrometer for measuring water vapor and total (vapor + condensed) water in the TTL.

Closed-path, single-reflection (path length ~78 cm) optical cells operated at constant T, P, and flow

- 2f detection in the wavelength range near 2089 pm to achieve high precision at low mixing ratios
 - S/N (2σ, 1 s) ~ 1 ppm = 4
- Scan across two H2O lines with different strengths to produce large dynamic range (1 – 2500 ppm)
- Total instrument weight: ~40 kg
- Side-facing inlet for water vapor sampling
- Forward-facing inlet for sampling of vapor + condensed H2O

Size-dependent enhancement factor calculated using CFD-based parameterization described in Eddy et al., Aerosol Sci., 2006

Acknowledgments

We would like to thank the NASA Global Hawk pilots, program staff and ground crew for their efforts in accomplishing the ATTREX mission.

Funding for the NOAA Water instrument development and participation came from the NASA ATTREX project, the NASA Upper Atmosphere Research Program, the NASA Radiation Sciences Program and the NOAA Climate Program Office.

References

Thornberry et al., Atmos. Meas. Tech., 2015