CarbonTracker-Lagrange: A new tool for regional- to continental-scale flux estimation

NOAA/ESRL1 & CIRES2: Arlyn Andrews1, Kirk Thoning1, Michael Trudeau1,2, Pieter Tans1
Carnegie Institution for Science3 & Stanford University4: Anna Michalak3,4, Vineet Yadav3
AER, Inc.: Janusz Eluszkiewicz, Marikate Mountain, Thomas Nehrkorn, J. Hegarty
Colorado State University: Christopher O'Dell
Outline

- Overview of Lagrangian inverse modeling for regional flux estimation
- Magnitude and impacts of errors in regional boundary values
- Implementation of boundary value estimation in the new CarbonTracker-Lagrange inverse modeling system
- Preliminary results for inversions using continuous and discrete in situ measurements
- Future work
Recent studies have demonstrated the usefulness of regional Lagrangian inverse modeling for greenhouse gas flux estimation:
Recent studies have demonstrated the usefulness of regional Lagrangian inverse modeling for greenhouse gas flux estimation:
Recent studies have demonstrated the usefulness of regional Lagrangian inverse modeling for greenhouse gas flux estimation:

Constraining the CO₂ budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system

T. Lauvaux¹, A. E. Schuh², M. Uliasz⁵, S. Richardson¹, N. Miles¹, A. E. Andrews⁴, C. Sweeney⁴, L. I. Diaz¹, D. Martins¹, P. B. Shepson³, and K. J. Davis¹
Recent studies have demonstrated the usefulness of regional Lagrangian inverse modeling for greenhouse gas flux estimation:
Simple 10-day back trajectory using archived meteorological fields from a model (e.g. WRF).

Air parcel is simulated as an infinitesimally small particle subjected to advection and sometimes convection.
• Instead of a single mean-wind trajectory, many trajectories are generated.
• Dispersion is simulated by adding random perturbations to the velocities.
• Time spent in the planetary boundary layer is tracked along with boundary layer height and used to compute the sensitivity to surface emission and uptake.
A gridded footprint (a.k.a. influence function) is computed by binning and averaging over all particles. Our footprints have 1°lon x 1°lat x hourly resolution.
CarbonTracker - Lagrange

- New Lagrangian assimilation framework under development at NOAA Earth System Research Laboratory in collaboration with many partners
CarbonTracker - Lagrange

• New Lagrangian assimilation framework under development at NOAA Earth System Research Laboratory in collaboration with many partners

Modeling team:
• AER, Inc.: J. Eluszkiewicz, T. Nehrkorn, M. Mountain
• Carnegie Institution for Science/Stanford: A. Michalak, V. Yadav, Mae Qui
• Colorado State University: C. O’Dell
• Harvard University: S. Wofsy, B. Xiang, S. Miller, J. Benmergui

Data Providers:
• NOAA Earth System Research Laboratory’s Global Monitoring Division
• Penn State University (K. Davis, S. Richardson, N. Miles)
• NCAR (B. Stephens)
• Oregon State University (B. Law, A. Schmidt)
• Lawrence Berkeley National Lab (M. Torn, S. Biraud, M. Fischer)
• Earth Networks (C. Sloop)
• Environment Canada (D. Worthy)
• Harvard University (S. Wofsy, J. W. Munger)
• U of Minnesota (T. Griffis)
• CalTech (D. Wunch, P. Wennberg; S. Newman) & JPL (G. Toon)
• GOSAT-ACOS team
CarbonTracker - Lagrange

• New Lagrangian assimilation framework under development at NOAA Earth System Research Laboratory in collaboration with many partners

• Supported by NOAA Climate Program Office’s Atmospheric Chemistry, Carbon Cycle, & Climate (AC⁴) Program and the NASA Carbon Monitoring System
CarbonTracker - Lagrange

- New Lagrangian assimilation framework under development at NOAA Earth System Research Laboratory in collaboration with many partners
- Supported by NOAA Climate Program Office’s Atmospheric Chemistry, Carbon Cycle, & Climate (AC⁴) Program and the NASA Carbon Monitoring System
- High-resolution WRF-STILT atmospheric transport model customized for Lagrangian simulations (Nehrkorn et al., *Meteorol. Atmos. Phys.*, 107, 2010). Species independent footprints are computed and stored for each measurement.
CarbonTracker - Lagrange

- New Lagrangian assimilation framework under development at NOAA Earth System Research Laboratory in collaboration with many partners
- Supported by NOAA Climate Program Office’s Atmospheric Chemistry, Carbon Cycle, & Climate (AC⁴) Program and the NASA Carbon Monitoring System
- High-resolution WRF-STILT atmospheric transport model customized for Lagrangian simulations (Nehrkorn et al., *Meteorol. Atmos. Phys.*, 107, 2010). Species independent footprints are computed and stored for each measurement.
- Efficient algorithm enables many permutations of the inversion (Yadav and Michalak, *Geosci. Model Dev.*, 6, 583-590, 2013)
 - Multiple data-weighting scenarios
 - Varied mathematical construct
 - Form of state vector
 - Bayesian or Geostatistical optimization
 - Multiple priors
CarbonTracker - Lagrange

• New Lagrangian assimilation framework under development at NOAA Earth System Research Laboratory in collaboration with many partners

• Supported by NOAA Climate Program Office’s Atmospheric Chemistry, Carbon Cycle, & Climate (AC⁴) Program and the NASA Carbon Monitoring System

• High-resolution WRF-STILT atmospheric transport model customized for Lagrangian simulations (Nehrkorn et al., Meteorol. Atmos. Phys., 107, 2010). Species independent footprints are computed and stored for each measurement.

• Efficient algorithm enables many permutations of the inversion (Yadav and Michalak, Geosci. Model Dev., 6, 583-590, 2013)
 - Multiple data-weighting scenarios
 - Varied mathematical construct
 • Form of state vector
 • Bayesian or Geostatistical optimization
 - Multiple priors

• Modular python software leverages new techniques from colleagues in academia and facilitates use of alternative transport models.

• New boundary value optimization capability!
\[\hat{s} = s_p + (HQ)^T (HQBHT + R)^{-1} (z - HS_p) \]

H is atmospheric transport operator (i.e. the footprints)
Q is the prior error covariance matrix
R is the model-data mismatch matrix
\(s_p \) is a vector containing the prior flux estimate
\(\hat{s} \) is a vector containing the revised fluxes

Modified framework:
• H has additional columns for boundary value grid cells
• \(s_p \) and \(\hat{s} \) contains additional elements
• Q contains additional rows and columns. No cross-correlation between boundary values and fluxes
Why is simultaneous estimation of boundary inflow and surface influence necessary?
Why is simultaneous estimation of boundary inflow and surface influence necessary?

1. Accurate 4-dimensional estimates of the boundary inflow are not readily available.

- Model is biased high by several ppm during summer.
- Seasonal pattern of residuals for 2010 is typical of all years.
Comparison with NOAA/ESRL aircraft data shows that vCT2011 summertime bias is pervasive in the Northern Hemisphere:

NOAA/ESRL Global Monitoring Division Aircraft Program:
http://www.esrl.noaa.gov/gmd/ccgg/aircraft/data.html
Principal Investigator: Colm Sweeney
A NOAA contribution to the North American Carbon Program
Why is simultaneous estimation of boundary inflow and surface influence necessary?

2. Flux estimates are apparently very sensitive to errors in assumed boundary values.

Changing the boundary condition makes the North American carbon sink disappear!

Using CarbonTracker for the boundary condition produces a flux estimate similar to CarbonTracker’s.

Boundary/Initial Condition Footprints

- Derived from trajectories:
- 3 types of boundary values:
 - Exit domain via the marine boundary layer
 - Exit domain via the free troposphere
 - Still within domain at end of 10 day run
- Number of endpoints within a grid cell determines the weight.
- Current grid resolution 2° lat x 3° lon x 1 day x (pbl, transition, or free troposphere)
- Boundary value estimation domain limited to region around N. America
Synthetic Data Exercise: Can CT-L recover known “truth” with weak prior?

Monthly Mean July 2010

<table>
<thead>
<tr>
<th>Region</th>
<th>CASA/GSFC</th>
<th>CT2011-oi</th>
<th>CT-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. America</td>
<td>-9.84</td>
<td>-8.46</td>
<td>-12.55</td>
</tr>
<tr>
<td>20°-50° N</td>
<td>-4.81</td>
<td>-4.25</td>
<td>-5.66</td>
</tr>
</tbody>
</table>

CASA/GSFC fluxes courtesy of G. J. Collatz; CarbonTracker fluxes courtesy of A. Jacobson.
First Real Data Inversion: CT2011-oi used as weak prior

Monthly Mean July 2010

Surface Fluxes

Mole Fraction Adjustment

<table>
<thead>
<tr>
<th></th>
<th>PgC</th>
<th>CASA/GSFC</th>
<th>CT2011-oi</th>
<th>CT-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. America</td>
<td>-9.84</td>
<td>-8.46</td>
<td>-9.72</td>
<td></td>
</tr>
<tr>
<td>20°-50° N</td>
<td>-4.81</td>
<td>-4.25</td>
<td>-5.40</td>
<td></td>
</tr>
</tbody>
</table>
Summary and Next Steps

• CarbonTracker-Lagrange is a new inverse modeling framework that includes boundary value optimization.

• Footprint libraries and source code will be available for download.

• Additional synthetic-data experiments to optimize simultaneous estimation of inflow and surface fluxes using existing and potential future data (network design studies).

• Improved real data inversions using In Situ, GOSAT, and TCCON data.

• We are seeking potential collaborations and novel applications.