Printed Optical Particle Spectrometer

A small, sensitive, light-weight, and disposable aerosol spectrometer for balloon and UAV applications

Hagen Telg
Cooperative Institute for Research in Environmental Sciences
NOAA Earth System Research Laboratory
May 20, 2014
Motivation

Motivation

Why aerosols

⇒ large uncertainty about effect on radiative forcing

Scientific questions that are difficult to address with existing tools

- Aerosol profiles inside the Asian Monsoon ⇒ no aircraft excess
- Fire plume sampling ⇒ no aircraft excess
- Volcanic aerosol and ash quantification ⇒ no aircraft excess, monitoring needed
- Geo-engineering ⇒ monitoring needed

⇒ A small, light-weight, low cost, low power optical particle counter will help greatly

IPCC: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis
Motivation

Why aerosols

⇒ large uncertainty about effect on radiative forcing

Scientific questions that are difficult to address with existing tools

- Aerosol profiles inside the Asian Monsoon → no aircraft excess
- Fire plume sampling → no aircraft excess
- Volcanic aerosol and ash quantification → no aircraft excess, monitoring needed
- Geo-engineering → monitoring needed

⇒ A small, light-weight, low cost, low power optical particle counter will help greatly
Motivation

Why aerosols

⇒ large uncertainty about effect on radiative forcing

Scientific questions that are difficult to address with existing tools

- Aerosol profiles inside the Asian Monsoon ⇒ no aircraft excess
- Fire plume sampling ⇒ no aircraft excess
- Volcanic aerosol and ash quantification ⇒ no aircraft excess, monitoring needed
- Geo-engineering ⇒ monitoring needed

⇒ A small, light-weight, low cost, low power optical particle counter will help greatly
Motivation

Why aerosols

⇒ large uncertainty about effect on radiative forcing

Scientific questions that are difficult to address with existing tools

- Aerosol profiles inside the Asian Monsoon → no aircraft excess
- Fire plume sampling → no aircraft excess
- Volcanic aerosol and ash quantification → no aircraft excess, monitoring needed
- Geo-engineering → monitoring needed

⇒ A small, light-weight, low cost, low power optical particle counter will help greatly

⇒ **Printed Optical Particle Spectrometer**
How POPS works

- **Light-source**: 405 nm laser diode
- **Beam shaping**: aspherical, and cylindrical lenses shape laser to line
- **Light collection**: spherical mirror image scattered light on **Photomultiplier Tube**
- **Stray light**: multiple slits suppress stray light
- **Signal processing**: PMT output current converted to voltage → amplified → digitized (4 MHz; 16 bit) → analyzed on single-board computer → communicate via serial port
- **Sizing**: intensity of scattered light depends on particle size

R. S. Gao et al., *Aerosol Sci. Technol.* 2013, 47, 137
How POPS works

- **Light-source**: 405 nm laser diode
- **Beam shaping**: aspherical, and cylindrical lenses shape laser to line
- **Light collection**: spherical mirror image scattered light on Photo-multiplier Tube
- **Stray light**: multiple slits suppress stray light
- **Signal processing**: PMT output current converted to voltage → amplified → digitized (4 MHz; 16 bit) → analyzed on single-board computer → communicate via serial port
- **Sizing**: intensity of scattered light depends on particle size

R. S. Gao *et al.*, *Aerosol Sci. Technol.* 2013, 47, 137
How POPS works

light-source 405 nm laser diode

beam shaping aspherical, and cylindrical lenses shape laser to line

light collection spherical mirror image scattered light on **Photomultiplier Tube**

stray light multiple slits suppress stray light

signal processing PMT output current converted to voltage → amplified → digitized (4 MHz; 16 bit) → analyzed on single-board computer → communicate via serial port

sizing intensity of scattered light depends on particle size

R. S. Gao et al., *Aerosol Sci. Technol.* 2013, 47, 137
How POPS works

Mie scattering simulation

R. S. Gao *et al.*, *Aerosol Sci. Technol.* 2013, 47, 137

- **light-source**: 405 nm laser diode
- **beam shaping**: aspherical, and cylindrical lenses shape laser to line
- **light collection**: spherical mirror image scattered light on PhotoMultiplier Tube
- **stray light**: multiple slits suppress stray light
- **signal processing**: PMT output current converted to voltage → amplified → digitized (4 MHz; 16 bit) → analyzed on single-board computer → communicate via serial port
- **sizing**: intensity of scattered light depends on particle size
How POPS works

POPS versus UHSAS

- **light-source**: 405 nm laser diode
- **beam shaping**: aspherical, and cylindrical lenses shape laser to line
- **light collection**: spherical mirror image scattered light on Photomultiplier Tube
- **stray light**: multiple slits suppress stray light
- **signal processing**: PMT output current converted to voltage → amplified → digitized (4 MHz; 16 bit) → analyzed on single-board computer → communicate via serial port
- **sizing**: intensity of scattered light depends on particle size

Dimensions:
- 15x6x6 cm
- weight < 1 kg
- cost* ~2500 $
- power 3 W

* labor excluded

R. S. Gao *et al.*, *Aerosol Sci. Technol.* 2013, 47, 137
how POPS performs

- single particles are resolved
- good diameter resolution $\Delta d/d \approx 15\%$
- minimum measurable diameter <150 nm
- agreement with theory
- comparison to UHSAS shows good agreement in absolute counts (down to 190 nm)

Raw Data

- Single particles are resolved
- Good diameter resolution $\Delta d/d \approx 15\%$
- Minimum measurable diameter <150 nm
- Agreement with theory
- Comparison to UHSAS shows good agreement in absolute counts (down to 190 nm)
how POPS performs

- single particles are resolved
- good diameter resolution $\Delta d / d \approx 15\%$
 - minimum measurable diameter < 150 nm
 - agreement with theory
 - comparison to UHSAS shows good agreement in absolute counts (down to 190 nm)
how POPS performs

- single particles are resolved
- good diameter resolution $\Delta d/d \approx 15\%$
- minimum measurable diameter $<150\,\text{nm}$
- agreement with theory
- comparison to UHSAS shows good agreement in absolute counts (down to 190 nm)
how POPS performs

- single particles are resolved
- good diameter resolution \(\Delta d/d \approx 15\% \)
- minimum measurable diameter <150 nm
- agreement with theory
 - comparison to UHSAS shows good agreement in absolute counts (down to 190 nm)
how POPS performs

- single particles are resolved
- good diameter resolution $\Delta d/d \approx 15\%$
- minimum measurable diameter <150 nm
- agreement with theory
- comparison to UHSAS shows good agreement in absolute counts (down to 190 nm)
field test on Manta UAV

package
- POPS
- Condensation Nuclei Counter
- 3 wavelengths aerosol absorption photometer → like CLAP
- aerosol filter sampler → 6 filters
- Radiometer

outcome
- POPS functional
 but interference with UAV communication and other instruments → bursts of noise
 ⇒ improve shielding
field test on Manta UAV

package

- POPS
- Condensation Nuclei Counter
- 3 wavelengths aerosol absorption photometer \(\rightarrow\) like CLAP
- Filter sampler \(\rightarrow\) 6 filters
- Radiometer

outcome

- POPS functional
- Interference with UAV communication \(\Rightarrow\) bursts of noise
- \(\Rightarrow\) improve shielding

poster by D. Murphy presented by R.S. Gao
field test on Manta UAV

package
- POPS
- Condensation Nuclei Counter
- 3 wavelengths aerosol absorption photometer → like CLAP
- aerosol filter sampler → 6 filters
- Radiometer

outcome
- POPS functional
 but interference with UAV communication and other instruments → bursts of noise
 ⇒ improve shielding
Printed Optical Particle Spectrometer

- **light weight**: < 1 kg ⇒ light enough for small weather balloon or UAV
- **low cost**: ~2500 $ ⇒ disposable
- **diameter range**: 150 - 2500 nm
- **tested**: Manta UAV

POPS will be fully functional in a couple of months!
acknowledgment

- Ru-Shan Gao
- Laurel Watts
- Steven Ciciora
- Richard McLaughlin
- Matt Richardson
- Joshua Schwarz
- Anne Perring
- Charles Brock
- Nick Wagner

- Tim Bates
- James Johnson