Historic European Non-\(\text{CO}_2\) Atmospheric Greenhouse Gas Records: Harmonization and Uncertainty Assessment

S. Hammer\(^1\), M. Lopez\(^2\), M. Galkowski\(^3\), T. Aalto\(^4\), F. Apadula\(^5\), P. Bergamaschi\(^6\), Z. Barcza\(^7\), H. Chen\(^8\), E. Dlugokencky\(^9\), G. Forster\(^10\), L. Hazan\(^11\), L. Haszpra\(^12\), J. Helle\(^11\), O. Hermansen\(^13\), C. Hoerger\(^14\), J. Lavric\(^15\), D. Lowry\(^16\), G. Manca\(^6\), A. Manning\(^17\), F. Meinhardt\(^18\), J. Moncrieff\(^19\), J. Necki\(^3\), S. O’Doherty\(^20\), N. Paramonova\(^21\), S. Piacentino\(^22\), A.T. Vermeulen\(^23\), M. Ramonet\(^11\), M. Schmidt\(^1\), M. Steinbacher\(^14\) and I. Levin\(^1\)

\(^1\)University of Heidelberg, Institut für Umweltphysik, Heidelberg, Germany; +49 06221 546, E-mail: shammer@iup.uni-heidelberg.de
\(^2\)Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Orme des Merisiers, France
\(^3\)AGH University of Science and Technology, Kraków, Poland
\(^4\)Finnish Meteorological Institute, Helsinki, Finland
\(^5\)Ricerca sul Sistema Energetico - RSE Spa, Milan, Italy
\(^6\)European Commission Joint Research Centre, Institute for Environment and Sustainability, Ispra I-21027, Italy
\(^7\)Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
\(^8\)Centrum voor IsotopenOnderzoek, University of Groningen, Groningen, Netherlands
\(^9\)NOAA Earth System Research Laboratory, Boulder, CO 80305
\(^10\)University of East Anglia, School of Environmental Sciences, Norwich, United Kingdom
\(^11\)Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Orme des Merisiers, France
\(^12\)Hungarian Meteorological Service and MTA Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
\(^13\)Norwegian Institute for Air Research (NILU), Oslo, Norway
\(^14\)Empa, Laboratory for Air Pollution/Environmental Technology, Duesseldorf, Switzerland
\(^15\)Max Planck Institute (MPI) for Biogeochemistry, Jena 07701, Germany
\(^16\)Royal Holloway, University of London, Egham, United Kingdom
\(^17\)University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, England
\(^18\)Umweltbundesamt, Messstelle Schaunsland, Kirchzarten, Germany
\(^19\)University of Edinburgh, Edinburgh, United Kingdom
\(^20\)School of Chemistry, University of Bristol, Bristol, United Kingdom
\(^21\)Voeikov Main Geophysical Observatory, Saint Petersburg 194021, Russian Federation
\(^22\)Laboratory for Earth Observations and Analyses, ENEA, Rome, Italy
\(^23\)Energy Research Centre (ECN), Petten, The Netherlands

One important aim of the European project InGOS ("Integrated non-\(\text{CO}_2\) Greenhouse gas Observation System") is harmonizing historic greenhouse gas (GHG) observations. The project brings together the PIs of 20 European atmospheric monitoring stations to jointly revisit, reevaluate and quality control their historic datasets (i.e. starting from 2000) for \(\text{CH}_4\), \(\text{N}_2\text{O}\) and \(\text{H}_2\). The need for consolidating European in situ data has become necessary since in the last decades European GHG monitoring has been conducted by a multitude of national organizations and institutions, each with its own measurement procedures, quality control system and link to the international calibration scales.

Furthermore, for the first time, uniform and comprehensive uncertainty estimates are calculated for all sites to provide additional, valuable information to data users. The InGOS uncertainty assessment presented here makes use of all historically available quality measures at the monitoring sites such as surveillance cylinders and/or co-located flask sample measurements. The InGOS uncertainty assessment consists of different uncertainty categories, namely repeatability, reproducibility, lab internal scale consistency, flask comparison uncertainty and scale transfer uncertainty. In Figure 1 an example for the uncertainty estimates of the Heidelberg \(\text{N}_2\text{O}\) measurements is given. Although designed for gas chromatographic data, the InGOS uncertainty estimates may be universally applied for different GHG measurement techniques. In addition to the uncertainty methodology we present a section of the revisited European data sets including their uncertainties.

Figure 1. \(\text{N}_2\text{O}\) measurements in Heidelberg and the respective uncertainty estimates.