14C-based emission estimates for halocarbons and other gases across the U.S.

1. ESRL, NOAA, Boulder, USA
2. CIRES, U of Colorado, Boulder, USA
3. INSTAAR, U of Colorado, Boulder, USA
4. Earth System Science, U of California, Irvine, USA
5. GNS, Lower Hutt, New Zealand
6. LLNL, Livermore, USA
7. LBNL, Berkeley, USA

Thanks to C. Siso, D. Neff, J. Higgs, S. Wolter, J. Kofler, P. Lang, D. Guenther, M. Crotwell, and others involved with sampling, analysis, logistics, and program management…

NOAA’s Climate Program Office and its Atmospheric Chemistry, Carbon Cycle, and Climate Program.

An extension of the analysis in:
Goal:
Derive atmosphere-based estimates of national emission magnitudes for chemicals influencing climate, ozone, & air quality.

Approach:
use multiple techniques…

For Today:

\[
\text{Emissions}(X_1) = \left[\Delta X_1 / \Delta X_2 \right] \times \text{Emissions}(X_2)
\]

where:
* \(\Delta X_2 \) = fossil-fuel CO\(_2\) (C\(_{ff}\)) derived from measurements of \(^{14}\)CO\(_2\)
* \(\text{Emissions}(X_2) \) = fossil fuel emissions from the VULCAN inventory (Gurney et al., 2009)
\(\Delta^{14} CO_2 \) is a useful proxy for \(C_{ff} \)

* In a model, distribution of \(C_{ff} \) dominates the \(\Delta^{14} CO_2 \) signal over NH land area → nuclear power and respiration influences are small → figures here are scaled according to mass balance relation of \(-2.7\%_{oo}/ppm\)

* In practice, measurement precision allows determination of \(C_{ff} \) within \(\pm 1 \) ppm
Deriving ΔX_1 and C_{ff} from air sample measurements

Apparent Emission Ratio
(as median of point-by-point enhancements)

HFC-134a vs. C_{ff} at WKT (2010)

Observations at WKT (Texas)
relative to background site

- HFC-134a (ppt)
- ΔX_1
- $\sim C_{ff}$
- $\Delta ^{14}C_{CO_2}$

Blue = NWR background

$C_{ff} \approx (\Delta ^{14}C_{obs} - \Delta ^{14}C_{bkgd}) / -2.7 \% / ppm + \ldots$
40-50 trace gases are measured in flasks:

- CO$_2$
- 13CO$_2$
- 14CO$_2$
- C18OO
- CH$_4$
- N$_2$O
- SF$_6$
- CO
- CFCs
- HCFCs
- COS
- H$_2$
- hydrocarbons
- methyl halides
- chlorinated and brominated methanes and ethanes

NOAA regional flask sampling network

- Weekly flask sampling (mid 1990s)
Apparent Emission Ratios ($\Delta X_1 / C_{ff}$):

- $\Delta CO / C_{ff}$ (0.4;0.7)
- $\Delta HFC-134a / C_{ff}$ (0.5;0.7)
- $\Delta HCFC-142b / C_{ff}$ (0.3;0.4)
- $\Delta HFC-152a / C_{ff}$ (0.4;0.6)

Annual:
- MWO
- wgc
- bao
- lef
- WKT
- SCT
- N & C
- amt

Summer:
- MWO
- wgc
- bao
- lef
- WKT
- SCT
- N & C
- amt

Winter:
- MWO
- wgc
- bao
- lef
- WKT
- SCT
- N & C
- amt
Deriving absolute emission rates:

\[
\text{Emissions}(X_1) = \left[\frac{\Delta X_1}{C_{ff}} \right] \times \text{Emissions}(C_{ff})
\]

\[
\Delta \text{HFC-134a} / C_{ff}
\]

\[
\text{Annual}
\]

\[
\text{Summer}
\]

\[
\text{Winter}
\]

Emissions (HFC-134a) \approx 43 \text{ Gg yr}^{-1}

from NHA & CMA alone \approx 46 \text{ Gg yr}^{-1}

(Miller et al., 2012)
Emissions\((X_1) \) = \([\Delta X_1 / C_{ff}] \times \) Emissions\((C_{ff}) \)

Regional Emissions (Gg/yr)

HFC-134a
- **Annual Emiss:**
 - (annual basis) \(\approx 58 \) Gg yr\(^{-1} \)
 - (seasonal basis) \(\approx 65 \) Gg yr\(^{-1} \)

Emissions\((C_{ff}) \)
- by site and season
 - **Site-specific**
 - **C\(_{ff}\) emissions**

Annual
- **Summer**
- **Winter**

\(\Delta HFC-134a / C_{ff} \)
- **Annual**
- **Summer**
- **Winter**
Annual national emissions:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Miller et al.*</th>
<th>this work**</th>
<th>EPA *</th>
<th>EDGAR *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>41 (16-73)</td>
<td>48</td>
<td>77</td>
<td>62</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>46 (10-86)</td>
<td>65</td>
<td>55</td>
<td>70</td>
</tr>
</tbody>
</table>

* As reported in Miller et al. (2012) from CMA & NHA only

** Scaled to total US C\(_f\) emission of 1.6 PgC yr\(^{-1}\)

For California:

<table>
<thead>
<tr>
<th></th>
<th>this work</th>
<th>CARB estimate for 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Tg yr(^{-1})</td>
<td>3.4</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>Gg yr(^{-1})</td>
<td>6.9</td>
</tr>
</tbody>
</table>

…from ave \(\Delta X_1/C_f\) at WGC and MWO in 2010 and Vulcan C\(_f\) for CA in 2002 scaled by EIA to 2010.
Refinements planned for the future:

1) Improving our estimates of:
 * background concentrations
 * emission ratios
 * surface sensitivity (footprints)

2) Adding observations at new sites to improve spatial coverage.

3) Performing inverse modeling analyses of all measurements.
 → with verification potentially provided by 14C.

4) Provide estimates of inter-annual emission changes.
Conclusions

From atmospheric measurements of a suite of chemicals affecting climate, ozone, and air quality at nine US sites during 2010:

* **State-wide and national scale emissions were derived**
 (based on measured atmospheric co-variations with fossil-fuel CO$_2$ and the VULCAN C$_f$ inventory)

* **Substantial variations noted across seasons and space**
 (necessary to characterize for deriving accurate and representative, top-down national emission magnitudes)

* Future work will focus on maintaining the observational network; refining our approach, defining robust uncertainties, and comparing results among multiple techniques.
Deriving site-specific C_{ff} emissions

Fossil-fuel emission inventory

Site sensitivity to surface emissions

Footprint calculated with STILT Lagrangian trajectory model driven by WRF winds at 10 km resolution

Site-specific C_{ff} emissions can be derived by convolving the Vulcan fossil-fuel emission inventory with site- and season-specific surface sensitivity footprints.
Apparent Emission Ratios ($\Delta X_1 / C_{ff}$):

- **ΔHCFC-22 / C_{ff} (0.5;0.6)**
- **ΔHFC-134a / C_{ff} (0.5;0.7)**
- **ΔHCFC-142b / C_{ff} (0.3;0.4)**
- **ΔHFC-152a / C_{ff} (0.4;0.6)**
Apparent Emission Ratios ($\Delta X_1 / C_{ff}$):

- $\Delta CO / C_{ff}$ (0.4; 0.7)
- $\Delta Methane / C_{ff}$ (0.4; 0.5)
- $\Delta SF_6 / C_{ff}$ (0.2; 0.3)

Graphs showing annual, summer, and winter emissions for different regions (west, mid-west, north east) with error bars.
Annual national emissions:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Miller et al.*</th>
<th>this work**</th>
<th>EPA *</th>
<th>EDGAR *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>41 (16-73)</td>
<td>48</td>
<td>77</td>
<td>62</td>
</tr>
<tr>
<td>SF₆</td>
<td>1.4 (0.7-3.0)</td>
<td>0.9</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>46 (10-86)</td>
<td>65</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>CH₄</td>
<td>39 (18-69)</td>
<td>41</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>N₂O</td>
<td>1.7 (0.7-3.6)</td>
<td>1.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Sites>> CMA & NHA nine All US All US

* As reported in Miller et al. (2012)
** PRELIMINARY for 2010; Scaled to total US Cᵣ emission of 1.6 PgC yr⁻¹