Atmospheric Lifetimes of CFC-11 and NF$_3$: Temperature dependent UV absorption cross sections

Max R. McGillen1,2, V.C. Papadimitriou1,2, E.L. Fleming3, C.H. Jackman3, and J.B. Burkholder1

1Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA.
2Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO, USA.
3NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Motivation for accurate laboratory measurements

• Experimental measurements of $\sigma(\lambda, T)$ represent a constraint on:
 – Atmospheric lifetimes
 – Global-warming potentials
 – Ozone-depletion potentials

• Interpretation of field data

• Increased accuracy/ reduces uncertainty in model calculated lifetimes
Outline

• Temperature dependent absorption cross section measurements presented for CFC-11 and NF$_3$
• Measurements are compared with current recommendations for modeling
• The impact of including these new data on 2-D modeled atmospheric lifetimes are discussed
Why measure CFC-11 $\sigma(\lambda, T)$?

• UV photolysis is the major loss process in the atmosphere
• Many room temperature measurements, but relatively few studies at stratospheric temperatures
• Model recommendations primarily based on two studies, but there is some discrepancy (as much as 25%)
• This level of uncertainty has an impact on calculated atmospheric lifetimes
Absorption cross section measurements

T range: 216–296 K, λ range: 190–230 nm
Typical precision: ± 0.5%, accuracy: ± 4% (2σ)
Absorption cross section measurements

Beer-Lambert Law

\[A(\lambda) = \sigma(\lambda, T) \times L \times [\text{CFC-11}] \]

T range: 216–296 K, \(\lambda \) range: 190–230 nm

Typical precision: ± 0.5%, accuracy: ± 4% (2\(\sigma \))
Cross section results

- Systematic decrease in σ with T
- Monotonic decrease in σ with λ
- Manuscript in prep.
Cross section results

- Optimized fit with a 5th-order polynomial
- T-dependence is observed in the critical wavelength region

\[
\log_{10}(\sigma(\lambda, T)) = \sum_i A_i(\lambda_i - 200)^i + (T - 273) \sum_i B_i(\lambda_i - 200)^i
\]
Comparison with parameterization

- Data is fitted well with the parameterization
- High-precision exp. data
- Appropriate fitting routine for model calcs.
Comparison with JPL recommendation

- Simon et al. is the current JPL recommendation
- Simon et al. data shows deviation in T-dep, >20%
Comparison with literature

- Both Mérienne and Chou studies are found to be in good agreement
- Some systematic differences at shorter wavelengths
2-D modeling results

- Critical λ range for atmospheric loss: 190–230 nm
- Most CFC-11 destruction between 15–30 km
- Local lifetime in the stratosphere \sim1 year
- Calculated global lifetime: 58.1 years
2-D modeling results

SPARC lifetime report

± 25% → 54.3 – 66.3 year lifetime
Global average lifetime: 60.2 years

This work

± 4% → 57.4 – 58.8 year lifetime
Global average lifetime: 58.1 years
CFC-11 summary

• Data impacts calc. lifetimes from current JPL
• Modeled lifetime decreased from 60.2 (SPARC) to 58.1 years (this work)
• Uncertainty in stratospheric photolysis rate decreased from ~25% to 4%
• Leading to a range in atmospheric lifetimes ±0.7 years (57.4 – 58.8 years)
NF₃

- Persistent greenhouse gas with a high GWP (~500 year lifetime)
- Mixing ratios are increasing in the atmosphere
- Previous studies focused on the room temperature σ (biased model calculated lifetimes)
- $\text{NF}_3 \ \sigma(\lambda, T)$ measured using the same approach as was used for CFC-11
2-D modeling results

- Inclusion of temperature dependence in σ is important
- Maximum atmospheric loss is between 25–50 km
- Papadimitriou et al. 2013 (GRL)
2-D modeling results

- Inclusion of temperature dependence in σ is important
- Maximum atmospheric loss is between 25–50 km
- Papadimitriou et al. 2013 (GRL)
NF$_3$ summary

• Inclusion of temperature dependence of the NF$_3$ UV absorption spectrum, the calculated global lifetime is increased from 484 (without) to 585 (with) years (includes O(1D) losses 29%)
• NF$_3$ exhibits a strong temperature dependence to $\sigma(\lambda, T)$, ~45% decrease at 210 nm
• GWP \rightarrow 100 yr time horizon = +1.1% (19,700)
 \rightarrow 500 yr time horizon = +6.5% (17,700)
Any questions?