The ODIAC
(Open-source Data Inventory for Anthropogenic Co2)
The second fossil fuel CO2 emissions dataset for CarbonTracker

ODIAC meets CDIAC team @ICDC8

T. Oda, S. Maksyutov, R.J. Andres, C.D. Elvidge, J.B. Miller, and A.R. Jacobson

1. Colorado State University
2. NOAA Earth System Research Laboratory
3. Nat’l Institute for Environmental Studies, Japan
4. CDIAC, Oak Ridge Nat’l Laboratory
5. NOAA Nat’l Geophysical Data Center
6. University of Colorado
• National emissions need to be distributed...

• We have good estimates for national and regional totals.

• Yet the estimates need to be prepared in a gridded form to incorporate into models.

• Sub national spatial distributions and temporal variations need to be estimated.

• In particular, fossil fuel CO2 emissions need to be accurately prescribed in inverse flux estimation framework.

\[F(x, y, t) = \lambda \cdot F_{bio}(x, y, t) + \lambda \cdot F_{oce}(x, y, t) + F_{ff}(x, y, t) + F_{fire}(x, y, t) \]

from CT2011 documentation
Nightlight as a spatial proxy for CO2 emissions

Caveat - Only works when human activity is associated with lights.
Point source emissions are not really correlated with population (also, nightlight).
ODIAC CO2 emissions distribution for 2006

This study

<table>
<thead>
<tr>
<th>Resolution (°)</th>
<th>Population diff (MtC)</th>
<th>correl</th>
<th>Nightlights diff (MtC)</th>
<th>correl</th>
<th>FFDAS diff (MtC)</th>
<th>correl</th>
<th>Brenkert 1998 diff (MtC)</th>
<th>correl</th>
<th>This study diff (MtC)</th>
<th>correl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1213</td>
<td>0.70</td>
<td>1360</td>
<td>0.68</td>
<td>1143</td>
<td>0.74</td>
<td>-</td>
<td>-</td>
<td>744</td>
<td>0.87</td>
</tr>
<tr>
<td>1.0</td>
<td>1006</td>
<td>0.80</td>
<td>1087</td>
<td>0.81</td>
<td>900</td>
<td>0.85</td>
<td>1045</td>
<td>0.75</td>
<td>474</td>
<td>0.94</td>
</tr>
<tr>
<td>2.0</td>
<td>806</td>
<td>0.84</td>
<td>810</td>
<td>0.88</td>
<td>651</td>
<td>0.91</td>
<td>788</td>
<td>0.84</td>
<td>315</td>
<td>0.97</td>
</tr>
<tr>
<td>3.0</td>
<td>670</td>
<td>0.87</td>
<td>691</td>
<td>0.90</td>
<td>545</td>
<td>0.92</td>
<td>654</td>
<td>0.87</td>
<td>262</td>
<td>0.98</td>
</tr>
<tr>
<td>4.0</td>
<td>608</td>
<td>0.88</td>
<td>641</td>
<td>0.92</td>
<td>479</td>
<td>0.93</td>
<td>644</td>
<td>0.87</td>
<td>206</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Oda and Maksyutov (2011)
Global emissions field Y2010 - ODIAC ver.3.0

Total: 9.1 PgC/yr
- Global emissions field Y2010 - Miller

Total: 9.1 PgC/yr
• ODIAC minus Miller
• Time series - Global emissions

CDIAC = \frac{(\text{Miller} + \text{ODIAC})}{2}

Global fossil fuel flux

\begin{align*}
P_{\text{C/yr}} & \text{ vs. Year} \\
\text{CO}_2 \text{ flux (PgC/yr)} & \text{ vs. Year}
\end{align*}
Time series - Major TC land regions

1. TC22 region #1 - NA Boreal
2. TC22 region #2 - NA Temp.
4. TC22 region #4 - SA Temp.
5. TC22 region #5 - Northern Africa
7. TC22 region #7 - Eurasian Boreal
8. TC22 region #8 - Eurasian Temp.
11. TC22 region #11 - Europe

CDIAC Miller ODIAC

TransCom Land regions
What's next?

- Point sources: 2.98PgC/yr
- nonpoint land: 5.36PgC/yr
- Cement: 0.44PgC/yr
- Gas flaring: 0.06PgC/yr
- Aviation: 0.12PgC/yr
- Ship: 0.16PgC/yr
FIGURE 1.2 Monthly atmospheric CO$_2$ concentrations at Mauna Loa, Hawaii. (Source: ORNL-ODIAC 19953)

1.2 THE CO$_2$ CONCENTRATION BUILDUP

Although there was some observation that the average earth surface temperature rose by 0.25°C between 1880 and 1940, it was not until the 1950s that measured...