Thirty Years of Atmospheric CH$_4$ Monitoring: What Have We Learned?

E. Dlugokencky1, M. Heller1,2, E.G. Nisbet3, D. Lowry3, P.M. Lang1, K.A. Masarie1, A. Crotwell1,2, L. Bruhwiler1

1NOAA ESRL GMD, 2CIRES,
3Royal Holloway, University of London

Acknowledgement: Paul Fraser and Paul Steele
\[[CH_4](t) = [CH_4]_{ss} - ([CH_4]_{ss} - [CH_4]_0)e^{-t/\tau} \]

Lifetime \(\approx 9 \text{ yr} \)
IAV: Better Process Understanding

- Mt. Pinatubo and CH$_4$ lifetime
 - SO$_2$ and SO$_4^{2-}$ affected OH production
- Economic collapse in fSU
 - Decreased emissions at high northern latitudes
- Increase since 2007
 - Tropical wetlands
O$_3$ + hv (330 ≥ λ ≥ 290 nm) → O(1D) + O$_2$
O(1D) + H$_2$O → 2 OH
Rate of formation O(1D) = j [O$_3$]
No significant change in Arctic emissions.
In situ CH$_4$ monitoring: Summary

- CH$_4$ approaching steady state
 - Current imbalance \sim16 Tg CH$_4$ yr$^{-1}$
- Eruption of Mt. Pintubo
 - Test understanding of OH sink processes
- Economic collapse of former Soviet Union
 - Altered trajectory of atmospheric CH$_4$
- Tropical precipitation: wetland emissions
 - Correlates with ENSO
 - Driver of recent CH$_4$ increase
Increases in SCIA in 2007 and 2008 consistent with in situ observations. Insufficient S/N to identify cause of recent CH_4 increase. Frankenberg et al., JGR, 2011.

GOSAT may be better.
Conclusions

• Global CH$_4$ increase continues in 2010:
 – ~6.0 ppb yr$^{-1}$ from 2007 to 2010
 – Largest, most persistent anomaly in record

• Observation-based assessment of causes:
 – T and precipitation are key drivers

• Current observation network is insufficient:
 – Satellite sensors: low S/N and disinformation
 – *In situ* measurements: increase spatial coverage
$[CH_4](t) = [CH_4]_\text{ss} - ([CH_4]_\text{ss} - [CH_4]_0)e^{-t/\tau}$

Lifetime ≈ 9 yr
Global CH$_4$ Budget by Source

<table>
<thead>
<tr>
<th>Source</th>
<th>Bousquet (Tg/yr)</th>
<th>IPCC Range (Tg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>110±13</td>
<td>74-106</td>
</tr>
<tr>
<td>Enteric fermentation</td>
<td>90±14</td>
<td>76-92</td>
</tr>
<tr>
<td>Rice agriculture</td>
<td>31±5</td>
<td>31-112</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>50±8</td>
<td>14-88</td>
</tr>
<tr>
<td>Waste</td>
<td>55±11</td>
<td>35-69</td>
</tr>
<tr>
<td>Natural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands</td>
<td>147±15</td>
<td>100-231</td>
</tr>
<tr>
<td>Termites</td>
<td>23±4</td>
<td>20-29</td>
</tr>
<tr>
<td>Oceans</td>
<td>19±6</td>
<td>4-15</td>
</tr>
<tr>
<td>Total</td>
<td>525±8</td>
<td>503-610</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sinks</th>
<th>Bousquet (Tg/yr)</th>
<th>IPCC (Tg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troposphere</td>
<td>448±1</td>
<td>428-511</td>
</tr>
<tr>
<td>Stratosphere</td>
<td>37±1</td>
<td>30-45</td>
</tr>
<tr>
<td>Soil</td>
<td>21±3</td>
<td>26-34</td>
</tr>
<tr>
<td>Total</td>
<td>506</td>
<td>492-581</td>
</tr>
</tbody>
</table>

Constraints on Global CH$_4$ Budget

- Globally averaged CH$_4$
 - Atmospheric burden: ~4990 Tg CH$_4$ in 2011
 - Radiative forcing (since PI): 0.5 W m$^{-2}$
- Rate of increase
 - Imbalance between emissions and losses
- Spatial distribution of CH$_4$ abundance
 - Spatial distribution of emissions
- Seasonal cycle
 - Temporal distribution of emissions