Partitioning of Terrestrial Carbon Sources Using 14CO$_2$: Observations and Modeling

1University of Colorado, Boulder, CO 80309; 303 492 8980, E-mail: Scott.Lehman@colorado.edu
2NOAA Earth System Research Laboratory, Boulder, CO 80305
3University of California at Irvine, Irvine, CA 92697
4Lawrence Livermore National Laboratory, Livermore, CA 94550
5Rafter Radiocarbon Laboratory, Lower Hutt, New Zealand

The small radiocarbon fraction of total CO$_2$ (~1:1012 14C:C) has proven to be an ideal tracer for its fossil fuel derived component. Unlike all other significant contributions to the atmospheric CO$_2$ budget, the fossil fuel component is devoid of radiocarbon, so that temporal and spatial gradients in recently added fossil fuel CO$_2$ can be readily identified as radiocarbon gradients provided there is adequate precision in the measurements. Over large industrialized land areas such as Eurasia and North America, the use of 14C to isolate the recently added fossil fuel contribution also quantifies (by difference) the change in atmospheric CO$_2$ due to uptake and release by the terrestrial biosphere. Simple mass balance considerations suggest that in order to apportion fossil fuel and biological components in the continental CO$_2$ observations to ±1 ppm, a 14CO$_2$ measurement repeatability of ~2 per mil (1-sigma ppt deviation from standard) is needed. Here we will report on i) our efforts to maintain the necessary measurement precision in a growing number of air craft and tall tower sampling sites around the U.S., and on ii) the ability of the TM5 transport model (as currently implemented for CO$_2$ and 14CO$_2$) to represent the Δ^{14}CO$_2$ observations. The latter is an important step towards using 14CO$_2$ as an additional constraint on regional fossil fuel emissions and Net Ecosystem Exchange flux retrievals in CarbonTracker

Figure 1. Model representations of a) Δ^{14}C (left panel) and b) the fossil fuel component of total CO$_2$ (C_{ff}; right panel) in the atmosphere near the surface over North America for a week in January of 2006. The color scales correspond to the expected mass balance relationship between Δ^{14}C and C_{ff} of -2.7 ‰/ppm. The sites labeled in white are existing 14C sampling sites, as are Mount Wilson Observatory (MWO) and Niwot Ridge (NWR) (which underlays Boulder Atmospheric Observatory (BAO)).