Recent Observed Variations in Background Aerosol Optical Depth and Associated Direct Radiative Forcing Estimates

E.G. Dutton1, R.R. Neely III1,2,3, S. Solomon2, J. Daniel2, J.A. Augustine1, D.U. Longenecker1,3, J.J. Michalsky1, R.S. Stone1,3, B. Forgan4, and C. Wehrli5

1Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO 80305; 303-497-6660, Fax 303-497-6546, E-mail, ellsworth.g.dutton@noaa.gov
2Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305
3Cooperative Institute in the Environmental Sciences, Univ. of Colorado, Boulder, CO 80309
4Bureau of Meteorology, Melbourne, Australia
5World Radiation Center, Physical Meteorological Observatory Davos, Switzerland
Mauna Loa Clear Sky Solar Transmission and Major Volcanic Eruptions

(monthly means and 5 mo. smoother)

after Ellis and Pueschel Science, 1971

(NOAA/ESRL/GMD)
Other independent AOD obs. monthly minimums and averages

E.G. Dutton, GMAC 2011
May 17 Boulder, CO
U.S. SURFRAD Network Monthly Minimum 500 nm AOD

Illinois

South Dakota

Mississippi

Montana

Colorado

Nevada

Pennsylvania

J. Augustine et al., 2008
International GAW AOD network - 500nm AOD Monthly Minimums (PFR Sun Photometer)

C. Wehrli
GAW/PFR Archive
Sunphotometer AOD Comparsion

MLO AOD (GMD-PFR and AERONET 500nm Mon. Anom.)

- 500nm Aeronet
- 500mn -PFR
- Aer 11-MO smth
- PFR 11-Mo Smth

\[y = 0.00040x - 0.80086 \]
\[y = 0.00061x - 1.22227 \]
Figure 2. Integrated backscatter for the 20–25 km altitude range at (a) Mauna Loa Observatory and (b) Boulder, Colorado.
CALIPSO Satellite Lidar Backscatter (NASA)

Scattering Ratio@532nm

Vernier et al., JGR 2009
What is the global direct radiative forcing for a change in stratospheric aerosol? An example estimate for the 2000s

Solar forcing (greatly simplified)

- \(\text{RF} \approx -S_o \cdot (1-\alpha) \cdot (1 - \exp(-\Delta \tau)) \cdot (1 - g) \cdot (\omega_o) \)

where:
- \(\text{RF} \) - direct aerosol radiative forcing
- \(S_o \) - avg. incident solar irradiance at TOA (340 Wm\(^{-2}\))
- \(\alpha \) - underlying albedo, mean planetary (0.30)
- \(\Delta \tau \) - change in aerosol optical depth (+0.003 to +0.005 at 500nm)
- \(g \) - aerosol asymmetry factor (0.7 to 0.85)
- \(\omega_o \) - single scat. albedo (1- absorption) >~ 0.97 (strat. warm)

- \(\text{RF} = -0.10 \) to \(-0.34\) Wm\(^{-2}\)
- \(\text{RF efficiency (RFE)} = \text{RF} / \Delta \tau = -34 \) to \(-69\) Wm\(^{-2}\)/unit \(\tau \)

Infrared forcing?

E.G. Dutton, GMAC 2011
May 17 Boulder, CO
2000s Aerosol Radiative Forcing Example Calcs. (Con’t)

Infrared RF contribution

• Very few observations of optical properties
• Several published calcs. for volcanic: -1/3 to -1/4 of solar RF

Net Direct Aerosol Forcing Efficiency (Solar + IR Forcing)

• From example: -34 · 0.66 to -69 · 0.75 (-23 to -52) W m⁻²/unit τ
• From detailed Pinatubo calcs. – 25 (J. Hansen, 2005), 30 (A. Lacis, 2000), 31 (E.G. Dutton, 1995) W m⁻²/unit τ
• NetRF estimate for the 2000s BG
 – Use detailed calcs for netRFE = -25 to -31 W m⁻²/unit τ
 – \(RF_{\text{net}} = \Delta \tau \cdot \text{netRFE} = (0.003 \text{ to } 0.005) \cdot (-25 \text{ to } -31) \)
 – \(RF_{\text{net}} \) range = -0.08 to -0.16 W/m⁻²
 – How does this compare to CO₂ forcing over same time period?
Compared to CO_2 radiative forcing over same time period (2000-2009)

- $\text{RF}_{2\text{xCO}_2} = 3.7 \text{ W m}^{-2}$, 270 to 540 ppm (IPCC)
- $\text{RF}_{\text{ECO}_2} = \frac{3.7}{\ln(2)} = \frac{5.34}{\text{W m}^{-2}}$ per $\ln(\text{ppm}_2/\text{ppm}_1)$
- Delta CO$_2$, 369 to 390 ppm (2000 to 2010 MLO)
- $\text{RF}_{\Delta \text{CO}_2} = 5.34 \cdot \ln(390/369) = +0.29 \text{ Wm}^{-2}$
- $\text{netRF}_{\text{aerosol}} = -0.08 \text{ to } -0.16 \text{ Wm}^{-2}$
- Potential global surface air temperature impact
 - Volcanic Aerosol Efficacy = ~0.91 (Hansen 2005)
 - $\text{RF}'_{\text{aero}} = 0.91 \cdot (-0.08 \text{ to } -0.16 \text{) Wm}^{-2} \text{ dec}^{-1}$

2000s “observed BG” direct aerosol global temperature forcing could be equal, but opposite in sign, to 1/4 to 1/2 that of CO$_2$ for the same time period.

E.G. Dutton, GMAC 2011
May 17 Boulder, CO
Summary/Conclusions

- Widely observed baseline total column AOD (strat. supported by lidar and satellite) is seen to increase during the 2000s, not necessarily monotonically.
- Observed aerosol change, if global, appears sufficient to potentially negate 1/4 to 1/2 of the CO$_2$ warming over the same time period, which may have happened (also, strat. not cooling as much).
- To refine, better information is needed on the spatial/temporal distribution of the aerosol optical properties, specifically τ, g, and ω_0 in that order, and then the use of a climate model to incorporate the combined forcing.