\(\text{CHF}_3 \) (HFC-23) Emission Trend Response to \(\text{CHCIF}_2 \) (HCFC-22) Production and Recent Emission Abatement Measures

B.R. Miller\(^1\), M. Rigby\(^2\), P. Krummel\(^3\), P. Steele\(^1\), L. Porter\(^1\), M. Leist\(^3\), P. Fraser\(^1\), A. McCulloch\(^4\), C. Harth\(^6\), P. Salameh\(^6\), J. Mühle\(^6\), R. Weiss\(^6\), R. Prinn\(^2\), S. O’Doherty\(^3\), B. Greally\(^5\) and P. Simmonds\(^5\)

\(^1\)Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; 303-497-6624, E-mail: ben.r.miller@noaa.gov
\(^2\)Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA 02138
\(^3\)Centre for Australian Weather and Climate Research, Aspendale, Victoria, Australia
\(^4\)Australian Government Bureau of Meteorology, Melbourne, Victoria, Australia
\(^5\)School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
\(^6\)Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093

\(\text{CHF}_3 \) (HFC-23) is an inevitable by-product of \(\text{CHCIF}_2 \) (HCFC-22) production for use in air conditioning/refrigeration and as feedstock in fluoropolymer manufacture. \(\text{CHF}_3 \) has limited use in small emissive and non-emissive markets and thus historically this ‘waste’ gas was simply vented to the atmosphere following production at \(\text{CHCIF}_2 \) plants. Concern over its high Global Warming Potential of 14,800 (100-year horizon) has lead to international efforts to curb its emissions. We present emission and production estimates for both gases based on observations of lower-tropospheric \(\text{CHF}_3 \) and \(\text{CHCIF}_2 \) mole fractions at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote \textit{in situ} Gas Chromatography/Mass Selective Detector instruments and in archived air samples. We quantitatively attribute recent changes in \(\text{CHF}_3 \) production to various sources.

\textbf{Figure 1.} AGAGE \textit{in situ} atmospheric observations (2007-2009) of \(\text{CHF}_3 \) at global monitoring sites and in the Cape Grim air archive (1978-2009) show a historically accelerating growth with a marked deceleration since 2006 (left axis). Inversion using the AGAGE 2D 12-box model yields \(\text{CHF}_3 \) emission estimates (right axis). The sharp increase in \(\text{CHF}_3 \) emissions during 2004-2006 results from a dramatic increase in \(\text{CHCIF}_2 \) production in Article 5 countries (predominantly China and India). The sharp decrease in \(\text{CHF}_3 \) emissions since 2006 reflects a decrease in global \(\text{CHCIF}_2 \) production, destruction (incineration) of >6 Gg \(\text{CHF}_3 \) yr\(^{-1}\) by Article 5 countries (China, India, South Korea, Argentina and Mexico) participation in the United Nations Framework Convention on Climate Change’s Clean Development Mechanism and emission reduction efforts by non-Article 5 countries.