Stratospheric Ozone Changes
(an integrating theme of Dave Hofmann’s research)

Sam Oltmans, Bryan Johnson, Joyce Harris, Robert Evans, Irina Petropavlovskikh, Dorothy Quincy
NOAA Earth System Research Laboratory
Boulder, Colorado
What this presentation is about

• Introduction (stratospheric ozone change at the heart of Dave’s research)
• Changes in the Antarctic (South Pole)
• Mid latitude trends
Antarctic Ozone Depletion

Hofmann et al. (1989) Ozone profile measurements at McMurdo Station, Antarctica during the spring of 1987, J. Geophys. Res.

Ozone Layer Recovery


Relationship to Ozone Depleting Gas Index and Annual Greenhouse Gas Index
Yearly minimum ozone profile (in red) compared to pre-ozone hole profile from July/August (in blue).
Three selected ozone profiles from 2006 showing the pre-ozone hole (July to mid August) average, mid-September, and the minimum total column ozone profile.

Satellite images from OMI/NASA.
Three selected ozone profiles from 2007 showing the pre-ozone hole (July to mid August) average, mid-September, and the minimum total column ozone profile.
The lowest column ozone measured by ozonesondes at South Pole station each year since 1986

September Depletion Rate: 14-21 km layer
South Pole
Total Column Ozone (1962-2007)

Diamonds - monthly means
Red solid - model fit
South Pole Total Column Ozone

Tendency curve (smoothed residuals plus polynomial)

±2 standard deviations from 100 realizations applied to residuals
South Pole Total Column Ozone

Instantaneous growth rate curve found from differentiating the tendency curve.

Average growth rate 1962-2007: 
-6.27 ± 0.15 % / dec

Average growth rate 1968-1995: 
-11.1 % / decade

Average growth rate 1996-2007: 
-1.38 % / decade
South Pole Layer Trend for 70 - 50 hPa and Trend with Altitude

Tendency curve (smoothed residuals plus polynomial)

±2 standard deviations from 100 realizations applied to residuals
Mauna Loa Total Column Ozone (1958-2007)
Smooth trend curves of monthly ozone values from selected Dobson stations (South Pole, continental US, and the tropics). Changes represented by the growth rate determined from these may be a measure of the rate of change of stratospheric ozone and thus represent various aspects of ozone layer recovery.
Continental U.S. Total Column Ozone
Tendency curve (smoothed residuals plus polynomial)
±2 standard deviations from 100 realizations applied to residuals
Continental U.S. Total Column Ozone

Instantaneous growth rate curve found from differentiating the tendency curve.

Average growth rate 1968-2007: 
-1.01 ± 0.15 % / dec

Average growth rate 1968-1995: 
-2.16 % / decade

Average growth rate 1996-2007: 
+1.73 % / decade
Boulder Layer Average for 70 - 50 hPa

Diamonds - monthly means
Red solid - model fit
Boulder Layer Trend for 70 - 50 hPa
and Trend with Altitude

Tendency curve (smoothed residuals plus polynomial)
±2 standard deviations from 100 realizations applied to residuals
Hilo, Hawaii Layer Trend for 70 - 50 hPa and Trend with Altitude

Tendency curve (smoothed residuals plus polynomial)

±2 standard deviations from 100 realizations applied to residuals
Conclusions

• Dave Hofmann’s ground breaking research on stratospheric ozone changes continues to lead the way in tracking ozone recovery.

• South Pole ozone does not show definite signs of recovery and is not expected to for a number of years.

• Mid latitude stratospheric ozone my show early signs of recovery.
South Pole Layer Average for 70 - 50 hPa

Diamonds - monthly means
Red solid - model fit

Ozone Mixing Ratio (ppbv)


70 - 50 hPa
South Pole
Arosa, Switzerland
Total Column Ozone (1926-2007)

Diamonds - monthly means
Red solid - model fit (seasonal, solar, and cubic polynomial only)
Arosa, Switzerland Total Column Ozone

Tendency curve (smoothed residuals plus polynomial)

±2 standard deviations from 100 realizations applied to residuals
Arosa, Switzerland Total Column Ozone

Instantaneous growth rate curve found from differentiating the tendency curve.
Mauna Loa Total Column Ozone

Tendency curve (smoothed residuals plus polynomial)
±2 standard deviations from 100 realizations applied to residuals