Observationally Closing the Gap Between IR Radiative Forcing and Changes in IR Radiation Climate
or
Is Atmospheric Infrared Radiation Doing What is Supposed to Do?

Ellsworth G. Dutton and the ESRL/GMD Radiation Group
NOAA, ESRL Boulder, Colorado 80305

With thanks to:
Martin Wild (ETHZ- ECHAM), Norm Wood (CSU- NCAR/CCSM, B Collins),
Stuart Freindenreich (GFDL-CM2, Delworth) for GCM results
Terminology:

- **Downward IR (LW) Irradiance at the Earth’s Surface** is quantity of interest in this talk

- **Downward IR (LW) Irradiance at the Earth’s Surface** is the integrated radiant power emitted downward by the atmosphere between about 3.5 μm – 100 μm and intercepted on a horizontal plane at the Earth’s surface. It is the combined natural and anthropogenic “greenhouse” radiation, \(f(T, \text{GHG}, \text{H2O}, \text{Clds}, \text{aerosols}) \) global annual mean ~ 350 W m\(^{-2}\)

- **Longwave (LW), infrared (IR), Terrestrial IR, Thermal IR, IR irradiance, and IR radiation** may be used interchangeably in this talk

- **IR anomalies** – Deseasonalized with long-term mean subtracted.

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
Global Mean Downwelling Longwave Radiation at the Earth’s Surface

ECHAM5 GCM
Driven by different radiative forcings

Current GCM slope $\sim 2.5 \pm 1 \text{ W m}^{-2} \text{ dec}^{-1}$

Change in IR “radiation climate”

ESRL/GMD Observations?
1993-2008

Gap or feedback amplification

Increase due to additional GHG IR emission only, no feedbacks from system
Slope $\sim 0.3 \text{ W m}^{-2} \text{ dec}^{-1}$

“IR radiative forcing”

GCM results
Provided by Martin Wild / ETHZ

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
ESRL-GMD Surface IR Observations: A few details
(G-Rad global baseline network, 1993 - 2008)

• Commercial pyrgeometers
• Albrecht & Cox calibration and data reduction methodology
• Calibration accuracy ~ 3 W m\(^{-2}\), traceable int’l
• Calibration stability < 0.2% (0.7 W m\(^{-2}\)) dec\(^{-1}\)
• Field calibration frequency once per 1 – 3 years
• Continuous sampling
• Manually edited and reviewed
• Subsequent analyses:
 – Deseasonalized 1-day averages → 20-day averages → AR-1 residuals
 – Two trend or analyses then applied:
 • Linear regression
 • Mann-Kendall tests on Sens slopes
 – Variance reduction from combining remote sample sites
GCM surface IR agreement with observations
M. Wild et al., 2001 (see Wild et al 2005 for update)

BEFORE

AFTER

BSRN OBS. (344 W m⁻²)
Model Avg. (329)

Global Means
Circa 1999

E.G. Dutton
GMAC, 15 May’08
Boulder, Colo.

GCM grid cell & GMD Obs averages 1993 – 2004 (W m⁻²)

<table>
<thead>
<tr>
<th></th>
<th>Barrow</th>
<th>Boulder (Erie)</th>
<th>Bermuda</th>
<th>Mauna Loa</th>
<th>Kwaj.</th>
<th>S. Pole</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSM</td>
<td>249.5</td>
<td>266.2</td>
<td>369.3</td>
<td>386.1</td>
<td>420.8</td>
<td>108.0</td>
<td>340</td>
</tr>
<tr>
<td>GFDL</td>
<td>243.5</td>
<td>289.1</td>
<td>372.1</td>
<td>390.3</td>
<td>420.9</td>
<td>107.2</td>
<td>338</td>
</tr>
<tr>
<td>ECHAM4</td>
<td>238.0</td>
<td>294.4</td>
<td>392.0</td>
<td>-</td>
<td>440.0</td>
<td>113.8</td>
<td>344</td>
</tr>
<tr>
<td>OBS</td>
<td>238.3</td>
<td>291.7</td>
<td>377.1</td>
<td>236.4</td>
<td>421.4</td>
<td>111.7</td>
<td>344</td>
</tr>
</tbody>
</table>

Within ~5 W m⁻² of Obs
Surface IR observations and GCM output for grid box containing the site

- Obs 20-day avg
- GCMs Month avg

BERMUDA
20-day Avg Desasonalized Surface IR Anomalies with Lowess Smoother (0.3)
ESRL-GMD Radiation Global Baseline Sites

BARROW

BOULDER

BERMUDA

MAUNA LOA

KWAJALEIN

SOUTH POLE

E.G. Dutton
GMAC, 15 May '08
Boulder, Colo.
Linear Trend Detection Times
(required data set duration for detection, B. Weatherhead et al., ’98)

Based on:
• Estimated variance
• Estimated autocorrelation (AR1)
• Expected trends

For the GMD deseasonalized IR data:

<table>
<thead>
<tr>
<th>Detectable trend</th>
<th>Uncertainty range in number of required years</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 W m(^{-2}) dec(^{-1})</td>
<td>70 to 220 years</td>
</tr>
<tr>
<td>2.0 W m(^{-2}) dec(^{-1})</td>
<td>19 to 53 years</td>
</tr>
<tr>
<td>3.5 W m(^{-2}) dec(^{-1})</td>
<td>13 to 35 years</td>
</tr>
</tbody>
</table>

Currently have ~15 years of GMD data - It’s time to investigate!

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
Estimated Observed Changes in Surface Downward IR

DESEASONIZED AR1 Residuals

Linear trends

<table>
<thead>
<tr>
<th>Site</th>
<th>Method</th>
<th>Regress</th>
<th>Mann-Kendall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRW</td>
<td>5.3</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>BLD</td>
<td>3.2</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>BER</td>
<td>2.7</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>MLO</td>
<td>2.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>KWA</td>
<td>1.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>SPO</td>
<td>3.7</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>6AVG/SE</td>
<td>3.2/0.5</td>
<td>2.8/0.6</td>
<td></td>
</tr>
<tr>
<td>5AVG/SE</td>
<td>3.4/0.6</td>
<td>3.2/0.6</td>
<td></td>
</tr>
</tbody>
</table>

(W m\(^{-2}\) dec\(^{-1}\))

| AVG\(_6\) | ~ 3.0 (0.6 SE) W m\(^{-2}\) dec\(^{-1}\) |
| AVG\(_5\) | ~ 3.3 (0.6 SE) W m\(^{-2}\) dec\(^{-1}\) |

- Not significant at 95%
- Potentially significant at 95%, res uncorrelated, normality tests good to marginal
 - Avg Regress student’s \(t = 2.8\)
 - Avg Mann-Kendall **95% minimum** = 0.9 Wm\(^{-2}\) dec\(^{-1}\)
 - (SPO least sig.)

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
SURFRAD (CONUS) initial results
(Surface IR-down change $W \text{ m}^{-2} \text{ dec}^{-1}$)

<table>
<thead>
<tr>
<th>Site</th>
<th>Method</th>
<th>AR1 res Regress</th>
<th>AR1 res M-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft Peck, Montana</td>
<td></td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Bondville, Illinois</td>
<td></td>
<td>2.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Goodwin, Miss.</td>
<td></td>
<td>3.4</td>
<td>2.8</td>
</tr>
</tbody>
</table>

AVG = 3.1, Boulder (Erie) = 3.3

Overall estimate of observed surface downward IR trend based on average for five globally remote sites (1993-2008)

$3.3 \pm \sim 1.5 \ W \text{ m}^{-2} \text{ dec}^{-1}$

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
ECHAM5 GCM Means

Observed
~3.3 ± 1.5 W m⁻² dec⁻¹

“GHG only, no H₂O feedback”

GCM results
Provided by Martin Wild / ETHZ

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
ECHAM5 GCM Means

Observed
~3.3 ± 1.5 W m⁻² dec⁻¹

"GHG only, no H₂O feedback"

IR Irradiance: W/m²

GCM results
Provided by Martin Wild / ETHZ

E.G. Dutton
GMAC, 15 May '08
Boulder, Colo.
ECHAM5 GCM Means

Observed
~3.3 ±1.5 W m⁻² dec⁻¹

“GHG only, no H₂O feedback”

GCM results
Provided by
Martin Wild / ETHZ

E.G. Dutton
GMAC, 15 May ’08
Boulder, Colo.
Summary

- Using “best estimate” from GMD baseline data, surface IR growing near that predicted by GCMs

- Theoretical statistical estimates of trend detectability are marginally met.

- Maintaining calibration stability and extending the record are crucial

- Mauna Loa is not and should not show as certain a trend as other sites

- The somewhat higher than expected observed growth rates for 1993 – 2008, 3.3 vs 2.5, may be due to Pinatubo cooling recovery and is explicitly consistent with the GFDL fully-forced model run.

Future plans
- Continue and expand observational effort
- Extend analysis to existing but growing shorter data sets
- More detailed comparisons to fully-forced GCMs in a diagnostic mode
- Adequately determined IR climate could assist in assessing the validity and extent of multiple new and hypothesized feedback mechanisms