Bridging Carbon Cycling and Air Quality Studies Using Atmospheric 14CO$_2$

J.B. Miller1, S. Lehman2, S. A. Montzka3, C. Sweeney1, P.P. Tans3, and J. Turnbull2,4

1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; 303-497-6086, Fax: 303-497-6290, E-mail: john.miller@noaa.gov

2Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309

3NOAA Earth System Research Laboratory, Boulder, CO 80305

4LSCE, CEA-CNRS, Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France

Δ^{14}C, the ratio of radiocarbon to total carbon, is a theoretically ideal tracer for recently added fossil fuel CO$_2$, because fossil fuel is 14C-free. In contrast, all other carbon reservoirs that exchange CO$_2$ with the atmosphere, like the terrestrial biosphere and the oceans, are relatively rich in 14C. Since 2004, NOAA ESRL and the University of Colorado Institute of Arctic and Alpine Research (INSTAAR) Radiocarbon Laboratory have worked together to make high precision (< 2 ‰) Δ^{14}C measurements. Our two sites in the eastern USA, Portsmouth, NH (NHA) and Cape May, NJ (CMA) exhibit large CO$_2$ signals from anthropogenic and biogenic fluxes. Using Δ^{14}CO$_2$, however, we are able to quantitatively partition the boundary layer CO$_2$ signal into biogenic and fossil fuel components. Once separated, these signals are independently useful. The biological signal can be used directly to infer the uptake and release of carbon by the biosphere, and the fossil signal can constrain anthropogenic emissions of CO$_2$, without the use of inventories, which can never be as recent as the measurements. Furthermore, as we will show, the derived fossil fuel CO$_2$ signal is closely related to boundary layer enhancements of many air quality tracers like CO, SF$_6$, CFC-replacement compounds, and solvents like perchloroethylene and dichloromethane. These relationships can exist for total CO$_2$, but we will show that they are biased because of the biospheric contribution. Finally, having established a relationship between fossil fuel CO$_2$ and air quality tracers, we will estimate regional scale (east coast) emissions of the air quality tracers by scaling the measured fossil-CO$_2$:tracer emission ratios to the well-known U.S. fossil fuel CO$_2$ inventory. As more 14CO$_2$ measurements are made, we will improve not only our understanding of CO$_2$ sources and sinks, but potentially emissions for a wide variety of other gases.

Figure 1. Fossil and biospheric CO$_2$ signals for boundary layer (PBL) aircraft air samples above Portsmouth, NH (NHA) and Cape May, NJ. Top and middle panels show PBL (black) and a composite free troposphere (blue) reference time series for CO$_2$ and Δ^{14}CO$_2$, respectively. Note that whereas for CO$_2$, the PBL values are both above and below the reference, for Δ^{14}C, the values are generally below the reference, showing the influence of fossil fuel emissions. The bottom panel shows the PBL-reference time series for CO$_2$ (black; C$_{tot}$) and the Δ^{14}C-derived values of the biological (green; C$_{bio}$) and fossil (red; C$_{ff}$) components. We see that even in winter, there are significant contributions from both biospheric and fossil fuel CO$_2$ to the total. In summer, we also see that C$_{tot}$ underestimates the full extent of the photosynthetic drawdown of CO$_2$ shown by C$_{bio}$.