Europe-wide reduction in primary productivity caused by the heat and drought in 2003

Ph. Ciais, M. Reichstein, N. Viovy

A. Granier, J. Ogée, V. Allard, M. Aubinet, Chr. Bernhofer, A.

Carrara, F. Chevallier, T. Conway, N. De Noblet, A. Friend, T.

Grünwald, B. Heinesch, G. Inoue, P. Keronen, A. Knohl, D.

Loustau, G. Manca, T. Machida, G. Matteucci, F. Miglietta, J.M.

Ourcival, K. Pilegaard, P. Peylin, S. Rambal, P. Rayner, G.

Seufert, J.-F. Soussana, M.-J. Sanz,

E.D. Schulze, T. Vesala, and R. Valentini

Linking the 2003 European heatwave with carbon observations

Will the greening trends continue with more frequent climate extremes?

Can positive carbon-climate feedbacks come from

temperate regions?

Secular increase in primary productivity from satellite NDVI over the past 20 years

Nemani et al., Science 2003

Europe-wide climate Spell : heat & drought

Historical temperature records in Switzerland

Shär et al., Nature 2003

Precipitation history in Bavaria

Summer temperature reconstruction from harvest dates in Burgundy

Chuine et al., Nature, 2003

THE EDDY COVARIANCE SITES ON A MODIS

Sites used in this study include: Deciduous broadleaf forests; Soroe, Hainich, Hesse Evergreen needle leaf forests; Hyytiala, Tharandt, Bray Mediterranean needle-leaf and broad-leaf forests and macchia: Puéchabon. San Rossore, Pianosa, Roccarespampani, El Saler, Castelporziano

Temperate and Mediterranean forests show reduced, GPP, TER, NEE

modelling system

Climate, and carbon fluxes in summer 2002 vs. summer 2003

Climate

Abnormal
Climate and
Modelled
Productivity in
2003

EOS-MODIS

FAPAR

anomaly

How abnormal is 2003?

Verification against crops yield national data

Interannual variations in CO₂ growth rate

Contour plot showing the temporal and spatial variations in the atmospheric increases of carbon dioxide. The cooler colors (green, blue, violet) represent periods of lower than average growth rates and the warmer colors (yellow, orange, red) represent high growth rate periods. The plot is derived from measurements of thousands of samples collected at the CMDL cooperative air sampling network sites. The variations in the growth rate of this climatically important gas are due to interannual variations in the imbalance between sources and sinks, and also to variations in atmospheric transport. Principal investigator: Thomas Conway, NOAA CMDL Carbon Cycle Greenhouse Gases, Boulder, Colorado, (303) 497-6681 (thomas.j.conway@noaa.gov, http://www.cmdl.noaa.gov/ccgg).

Atmosphere-based inversion estimate

70 sites Grid based inversion (3.5 x 2.5°)

LMDZ model

Interannual winds

Spatial correlations

Anomalies vs. mean 97-03

See Peylin et al. Poster also Patra, Roedenbeck...

Processes

Fig. 2. Ratio T/PET calculated from sap flow measurements in an oak stand as a function of relative extractable water (REW) calculated from neutron probe measurements (from Bréda and Granier, 1996). Two data sets are reported: LAI = 6 m² m⁻² (black circles) and LAI = 4.5 m² m⁻² (open triangles). The dotted line shows the critical REW (REW_c).

Soil water content variation model and observations indicate large water stress at all sites in 2003 with Root Extractable Water REW < 0.

Breda et al. 2004

Small Changes in water use efficiency

Effects of high ozone exposure

Carbon crashes in the recent past

Conclusions (1)

- Uniquely dense eddy covariance network to understand climate-carbon-water interactions at the sub-continental level
- Severe drop of transpiration and GPP
- Respiration tailed off with GPP drop rather than increased with warming
- forests became net CO₂ sources to the atmosphere in July-Aug!
- Anomalous source of 0.5 PgC y⁻¹, undoing years of mean sink, enough to explain 50% of the global CO₂ growth rate anomaly during 2003

Conclusions (2)

- In the future, adverse impacts of climate extremes may cancel out the benefits of moderate climate change
- Forest productivity may be durably reduced if extremes become more frequent
- In the long run, conifer forest may be more adapted to future climate conditions in Europe
- And so large uncertainties!

Implications for the future

FPAR anomalies & recent droughts

Fig. 1: Temporal development of the spatial pattern of the fAPAR anomaly during 2003: