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The carbon cycle: Current state of knowledge Carbon cycle representation Results
The strength of the total carbon sink is well known Parameter probability density functions (PDFs)
CO . t d t I Net Primary Productivity (60 GtC yr-1)
, CONCENTrAtions are measured accurately NPP = NPP, (1 + B*In([CO,J/[CO,],) o I NesstocorrelationT | 2 ea+ | Joint parameter PDF
- Detailed accounting of industrial emissions Atmosphere — B 58.3% P o £ o3 A70d SCR - is not normally
. . . espiration C . . .
Mechanisms governing sink strength are poorly understood (600 GIC) e g é distributed. Single
- Many feedbacks, such as respiration and temperature (100 GtC) - 2 = ngsmeter projec-
- Large uncertainty in predictions of future sink strength 1 o [ 4 I S e
. . o) 6) (@) - 0.1
Coupled GCM/carbon cycle models estimate future sink Pas 37.5% * Q47" 1% & O s | 4% | Neglecting autocor-
- Different models do not agree with each other: % Detritus (litter) (120 GtC) 1 S 5 % o2 os s s 1 relationinthe likeli-
a Ih1 Ocean surface layer 1% * Q710 Q,, (dimensionless) B (dimensionless) hood function
20001 $1ADLEY CENTRE MODEL FuIIy Coupled models run e R o biases oarameter
. : Ihz Ocean layer 2 0.2 0.16 — .
under similar business as a - 1 s estimates.
.. . Ny Soil carbon (1500 GtC) = 1| 04 /—\ |
usual emissions scenarios Ih3 Sezain [Eyer 2 3 o0 YOG
1000 F Emissions._ 5 ’ : 5] ' o« e
_ Cox et al. (2000): S R Driving the model
e : : 2 o bl 2 e with observed
& Terrestrial carbon sink = ] =0
o S P8 e _.- | temperature results
= becomes source around 2050 o G .
S o - . . 2 o0s 2 004 I in sharper PDFs
% 1920 1960 2000 2040 2080 Dufresne et al. (2002): MOdel I”pUt and Varlable parameters a A 002 j \ (less uncertainty)
EE-DDD e e . @ VT AT . TerreStriaI Sink remains Sink . . 0 100 Oo 0.2 0.4 0.6 08 1
g B AR MODEL throughout 21st century All model input, output, parameters and constraints are 6 (dimensionless)
5 : : lobal averages or sums . L - .
” . Differences arise from J 9&5 O U Q,, and B display a significant positive correlation
1000} different respiration- Input: annual CO, emissions and temperature (1850-2004) . Rk NPP <imilar 1o | o low NPP
e els . .« . - I respiration an I simiiar to IOWw respliration and iow
temperature sensitivities and - Industrial emissions: Marland et al. dataset TP I . Pivatt
partitioning of soil Land ccione: M ht ¢ 2l dataset n and 3 display a significant negative correlation
5 and vegetation carbon. - Land-use emissions: Houghton e al.datase . - High ocean sink, low land sink similar to high land sink, low ocean sink
- Temperature: Jones et al. data (interannually varying) or

1920 1960 2000 2040 2080

YEAR simple radiative model (smooth)
source: Sarmiento and Gruber, Physics Today (2002) Parameters and prior ranges:

How do new observations reduce sink uncertainty?

- Consider a strategy that requires CO, stabilization at 550 ppm
- Key question: How much anthropogenic CO, per year can be emitted?

Potential pitfalls of this approach: Prior bounds are basic physical constraints - Uncertainty in sink strengh causes uncertainty in allowable emissions
- Computationally expensive (~weeks per run) Carbon cycle parameters (terrestrial and oceanic): - Information that reduces sink uncertainty can have economic value
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of CO, concentrations and fluxes ASSlmllatlng historical observations . . year . Consider assimilating hypothetical new
historical observations only | observations into the model:

- Obtain probability density functions of key parameters

- Make probabilistic predictions about the future CO, sink

- Evaluate utility of observation systems to reduce
parametric uncertainty and, therefore, sink uncertainty

1.8} 2004 terrestrial flux: 2.2 +/- 0.4 GtC yr

2004 ocean flux: 2.5 +/- 0.4 GtC yr
derived from max. likelihood solution

Goal: to determine probability density functions (PDFs)
of parameters given observational constraints.
Model constraints: CO, concentrations and fluxes
- CO, from Law Dome ice core, Mauna Loa observatory
- Cumulative ocean flux: Sabine et al.(2004)
119 +/- 19 anthropogenic PgC through 1995
- Decadal ocean fluxes: McNeil et al. (2003)
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A simple carbon cycle model
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