
Probabilistic predictions run using 
parameter PDFs under the S550 
stabilization scenario from 2005-2100

Allowable emissions uncertainty caused 
entirely by sink uncertainty.
 Uncertainty grows with time
 Most of the uncertainty is caused by   
 Q

10
 and β (terrestrial parameters)

How would additional observations 
reduce sink strength uncertainty?
Consider assimilating hypothetical new
observations into the model:
 2004 terrestrial flux:  2.2 +/- 0.4 GtC yr-1

 2004 ocean flux:  2.5 +/- 0.4 GtC yr-1

 derived from max. likelihood solution
 

Terrestrial flux observation reduces 
uncertainty much more than ocean flux 
observation, given our model structure
 temperature signal helps to partition  
 respiration and NPP, reduce spread in  
 β and Q

10

Goal:  to determine probability density functions (PDFs)      
 of parameters given observational constraints.
Model constraints:  CO

2 
concentrations and fluxes

 -  CO
2
 from Law Dome ice core, Mauna Loa observatory  

 -  Cumulative ocean flux:  Sabine et al. (2004)
  119 +/- 19 anthropogenic PgC through 1995
 -  Decadal ocean fluxes:  McNeil et al. (2003)
  1.6, 2.0 +/- 0.4 PgC yr-1 (1980s, 90s)
Method:  Markov Chain Monte Carlo
 -  Begin with initial guesses for parameters
 -  Calculate likehood of observations given model
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The carbon cycle:  Current state of knowledgeThe carbon cycle:  Current state of knowledge
The strength of the total carbon sink is well known
 - CO

2 
concentrations are measured accurately

 - Detailed accounting of industrial emissions
Mechanisms governing sink strength are poorly understood
 - Many feedbacks, such as respiration and temperature
 - Large uncertainty in predictions of future sink strength
Coupled GCM/carbon cycle models estimate future sink 
 - Different models do not agree with each other:

Fully coupled models run 
under similar business as 
usual emissions scenarios
 

Cox et al. (2000):
Terrestrial carbon sink 
becomes source around 2050
 

Dufresne et al. (2002):
Terrestrial sink remains sink 
throughout 21st century
 

Differences arise from 
different respiration-
temperature sensitivities and 
partitioning of soil
and vegetation carbon.

Potential pitfalls of this approach:
 - Computationally expensive (~weeks per run)
 - Very limited uncertainty estimates of predictions
 - Upscaling problem of model parameters
  - not calibrated with large-scale observations in a formal  
   statistical sense

A simple carbon cycle modelA simple carbon cycle model

Net Primary Productivity (60 GtC yr-1)

NPP = NPP0 (1 + β*ln([CO2]/[CO2]0)
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All model input, output, parameters  and constraints are   
   global averages or sums
Input:  annual CO

2
 emissions and temperature (1850-2004)

 - Industrial emissions:  Marland et al.  dataset
 - Land-use emissions:  Houghton et al. dataset 
 - Temperature:  Jones et al.  data (interannually varying) or  
         simple radiative model (smooth) 

Carbon cycle representationCarbon cycle representation

Model input and variable parametersModel input and variable parameters

Assimilating historical observationsAssimilating historical observations

Parameters and prior ranges:
Prior bounds are basic physical constraints
Carbon cycle parameters (terrestrial and oceanic):
Q

10
 - Respiration temperature sensitivity ( > 1, dimensionless)

  Governs strength of respiration-temperature feedback

β  -  Carbon fertilization factor (> 0, dimensionless)

  Logarithmic increase in NPP in response to increasing CO
2

η  -  Thermocline diffusivity (> 0 m yr-1)

  Governs strength of ocean carbon sink

Statistical parameter:
θ  -  Lag-1 autocorrelation coefficient (-1 to 1, dimensionless)

Accounts for autocorrelation in the residuals of CO
2
 concentrations

 

 -  Can be extended to account for Lag-1 autocorrelation (θ)
 -  Perturb parameters, recalculate L, check for acceptance
 -  Repeat above until chain converges
 -  Construct parameter PDFs from chain and likelihood info

D = observations
Y = model predictions
σ = observation error

source:  Sarmiento and Gruber,  Physics Today (2002) 

ResultsResults
Parameter probability density functions (PDFs) 
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Joint parameter PDF 
is not normally     
distributed.  Single 
parameter projec-
tions

Neglecting  autocor-
relation in the likeli-
hood function 
biases parameter  
estimates.

Driving the model 
with observed 
temperature results 
in sharper PDFs 
(less uncertainty) 

Q
10

 and β display a significant positive correlation 
 -   High respiration and high NPP similar to low respiration and low NPP

η and β display a significant negative correlation
 -   High ocean sink, low land sink similar to high land sink, low ocean sink

How do new observations reduce sink uncertainty?
   - Consider a strategy that requires CO

2
 stabilization at 550 ppm

 -  Key question:  How much anthropogenic CO
2
 per year can be emitted?

 -  Uncertainty in sink strengh causes uncertainty in allowable emissions
 -  Information that reduces sink uncertainty can have economic value
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ConclusionsConclusions
-  Neglecting autocorrelation in the residuals of CO

2
 

    concentration causes overconfident and biased results
-  Model parameters are not normally distributed
-  Driving the model with historical temperature provides 
    information to constrain parameters and reduce uncertainty
- Terrestrial flux observations can considerably reduce future 
   sink uncertainty
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Main question:  What can we achieve with a simple model?
 - Isolate and analyze key carbon cycle parameters
 - Assimilate global-scale historical observations or estimates
   of CO

2
 concentrations and fluxes

 - Obtain probability density functions of key parameters
 - Make probabilistic predictions about the future CO

2
 sink

 - Evaluate utility of observation systems to reduce 
   parametric uncertainty and, therefore, sink uncertainty

ObjectivesObjectives

Respiration

Limitations
 - no ocean circulation or biology; no ocean climate response mechanism
 - no consideration of precipitation, regionally varying climate or vegetation
 - Did not consider uncertainty in land-use emissions in optimization

 


