EVALUATION OF CO AND SF₆ AS QUANTITATIVE TRACERS FOR FOSSIL FUEL CO₂: THE MODELLERS' VIEW

<u>U. Karstens¹</u>, U. Gamnitzer², and I. Levin²

¹Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, D-07745 Jena, Germany; karstens@dkrz.de

²Institut für Umweltphysik, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany; ugamnitz@wzw.tum.de, ingeborg.levin@iup.uni-heidelberg.de

ABSTRACT

Simulations with a regional transport model are evaluated in order to determine to which extend the indirect fossil fuel combustion tracer CO or the purely anthropogenic tracer SF_6 can be used to retrieve the contribution of fossil fuel emissions in the atmospheric CO_2 signal.

INTRODUCTION

The separation of the contribution from fossil fuel emissions in the atmospheric CO_2 signal is crucial for the assessment of continental carbon fluxes from inversions of atmospheric CO_2 concentration measurements. Though fossil fuel emissions are mapped by inventories, they are not yet verified by independent measurements. The radioactive carbon isotope ¹⁴C in CO_2 has proven to be a good quantitative tracer for the fossil fuel component in atmospheric CO_2 because fossil fuels do not contain any ¹⁴C [*Levin et al., 2003*]. But the analysis of ¹⁴CO₂ is complex and does not allow continuous observation with high temporal (i.e. hourly) resolution. Carbon monoxide is another potential tracer for fossil fuel CO_2 because it is emitted concurrently with CO_2 during combustion processes. CO has the advantage that continuous measurements are comparatively cheap and easy. However, CO has atmospheric sinks and also sources different from fossil fuel burning and the CO/fossil CO_2 emission ratio varies in space and time depending on the mixture of source types. Another surrogate tracer is the long-lived SF₆, which is closely linked to human activities but not explicitly to fossil fuel emissions.

MODEL SETUP AND EMISSIONS INVENTORIES

The regional atmospheric transport model REMO [*Chevillard et al., 2002*] is used to simulate the temporal and spatial distribution of fossil fuel CO₂, CO and SF₆ mixing ratios. In the current set up the horizontal grid resolution is 55 km x 55 km and the model domain covers a large part of the Northern Hemisphere (north of 30°N). To account for contributions from sources outside the model domain REMO is nested into the global transport model TM3 [*Heimann and Körner, 2003*]. Additional to surface fluxes, which are prescribed from inventories and biosphere models, also the photochemical processes for CO in the atmosphere are included in REMO. CO and CO₂ emissions from fossil fuel combustion were extracted from two different emissions inventories: (1) The Emission Database for Global Atmospheric Research (EDGAR), which provides annual mean emissions for several base years on a global 1°x1° grid [*Olivier and Berdowski, 2001*], and (2) hourly emission values calculated by the Institute of Energy Economics and Rational Use of Energy (IER) on a 50km x 50km grid for the greater part of Europe available for the year 2000 [IER, emission data, 21 Dec. 2004]. A comparison of annual mean CO and CO₂ emissions and resulting emission ratios in Europe reveal large regional differences between the two datasets because estimates are based on different data sources and also the spatial pattern of emissions and hence emission ratios is strongly dependent on the way national totals are disaggregated. SF₆ emissions were also extracted from the EDGAR database.

COMPARISON WITH OBSERVATIONS

REMO simulation results are first compared to continuous measurements of CO, CO₂ and other trace gases at several stations in Europe in order to investigate model performance. As an example, observed CO₂, CO and ²²²Radon time series for August 2002 in Heidelberg are shown in Fig. 1 together with REMO results from simulations using the two different emissions inventories for fossil fuels. In summer the model often overestimates the mixing ratios of all three gases, in particular during nighttime. While both model simulations are quite similar for CO₂, EDGAR emissions result in CO mixing ratios almost twice as high as IER emissions. Since the mean radon source prescribed in the model (52 Bq m⁻² h⁻¹) is only slightly lower than observed long-term mean emissions in the Heidelberg area, the overestimation indicates a tendency of the model to underestimate vertical exchange during night in this grid cell. But even after accounting for this systematic effect it still seems that both inventories, in particular EDGAR, overestimate CO (and CO₂) emissions in summer.

Fig 1. Hourly CO₂ and CO mixing ratios and ²²²Rn activity in Heidelberg in August 2002, comparison of REMO results with observations.

At the Heidelberg site quasi-continuous nighttime observations of 14 CO₂ are available, which allow to determine the fossil fuel CO₂ contribution at a two-weeks temporal resolution (compare accompanying paper by Levin et al., this issue). Respective values have been extracted from REMO simulations for the same time periods in 2002 as for the integrated observations (Fig.2a). In order to reduce model transport uncertainties and hence allow a more quantitative evaluation of emissions inventories, CO as well as fossil fuel CO₂ from both simulations were normalized using the ²²²Radon observations. The overestimation of CO by both model simulations is still evident (Fig.2b) but also fossil fuel CO₂ is considerably higher than in the observations in summer and early autumn (Fig.2a). The atmospheric CO/CO₂ fos ratio also shows a systematic difference between the two simulations (Fig. 2c). Most probably the emissions inventories postulate too high CO as well as too high CO₂ emissions, which could either be due to an overestimate of sources or emissions factors or both. If the calculated mixing ratio is normalized with the measured CO, simulated CO₂fos compares much better with observations (Fig. 2d), indicating a way to correct inventory-based model simulated fossil fuel CO2 contributions at sites where CO but no ¹⁴CO₂ observations exist. Based on our current simulations this would result in mean relative errors of 20% and 40% for EDGAR and IER emissions, respectively.

CONCLUSIONS

Model simulations provide a useful tool to investigate possibilities of temporal and spatial propagation of a ¹⁴C calibration of CO- (or SF₆-) derived fossil fuel CO₂ at selected stations. However, the intercomparison of simulated results based on different emission inventories and also the comparison with observed CO/CO₂ fos ratios reveal the large uncertainties still existing in the available emission inventories.

ACKNOWLEDGMENTS

We thank the Institute of Energy Economics and Rational Use of Energy (IER), University of Stuttgart, Germany, for providing emissions data as part of CarboEurope GHG concerted action, information available at http://carboeurope.ier.uni-stuttgart.de/

REFERENCES

- Chevillard, A., U. Karstens, P.Ciais, S. Lafont and M. Heimann (2002), Simulation of atmospheric CO₂ over Europe and western Siberia using the regional scale model REMO, *Tellus*, 54B, 872-894.
- Heimann, M. and S. Körner (2003). The global atmospheric tracer model TM3. *Technical Report No.* 5, Max-Planck-Institut für Biogeochemie, Jena, pp. 131.
- Levin, I., B. Kromer, M. Schmidt, and H. Sartorius (2003), A novel approach for independent budgeting of fossil fuels CO₂ over Europe by ¹⁴CO₂ observations, *Geophys. Res. Lett.*, *30*(23): 2194, doi: 10.1029/2003GL018477.
- Olivier, J.G.J. and J.J.M. Berdowski (2001) Global emissions sources and sinks. In: Berdowski, J., Guicherit, R. and B.J. Heij (eds.) *The Climate System*, pp. 33-78. A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands. ISBN 90 5809 255 0.

Fig. 2: (a) Fossil fuel CO_2 , (b) CO, both normalized using ²²²Rn, (c) CO/CO₂fos ratios and (d) fossil fuel CO₂ recomputed from observed CO and simulated CO/CO₂fos for twoweekly integrated samples in Heidelberg, comparison of REMO results with observations.