EFFECT OF ECTOMYCORRHIZAL INFECTION ON THE GROWTH AND PHOTOSYNTHETIC CHARACTERISTICS OF THREE SPECIES OF PINE SEEDLINGS GROWN UNDER ELEVATED CO₂ CONCENTRATIONS

D.S. Choi¹, Y. Maruyama², H.O Jin³, K. Sasa⁴ and T. Koike⁵

¹JSPS fellow, Hokkaido University Forests, FSC, Sapporo 060-0809, Japan; dongsu37@exfor.agr.hokudai.ac.jp
² Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan; maru0@ffpri.affrc.go.jp
³ Division of Life Science, Kyung Hee University, Yongin 449-701; hojin@khu.ac.kr
⁴ Hokkaido University Forests, FSC, Sapporo 060-0809, Japan; sasa@exfor.agr.hokudai.ac.jp

⁵ Hokkaido University Forests, FSC, Sapporo 060-0809, Japan; tkoike@exfor.agr.hokudai.ac.jp

ABSTRACT

After 18 weeks, elevated CO₂ (720 μ mol·mol⁻¹) increased significantly the ectomycorrhizal development. The phosphate concentration (P) in needles of *Pinus densiflora* and *Larix kaempferi* inoculated with *Pt* or EC was significantly higher than that without inoculation at both CO₂ concentrations. *Pt* or EC inoculation had led to significantly increase the physiological activities, such as the PAR saturated net photosynthetic rates (*Psat*), maximum net photosynthetic rate at saturated CO₂ concentration (*Pmax*), carboxylation efficiency (CE), RuBP regeneration rate of *A/Ci* curve and water use efficiency (WUE) of *P. koraiensis*, *P. densiflora* and *L. kaempferi* seedlings grown at both CO₂ concentrations (360 and 720 μ mol·mol⁻¹) relative to non-inoculated seedlings. Moreover, dry mass and stem diameter of inoculated *P. koraiensis*, *P. densiflora* and *L. kaempferi* seedlings significantly higher than those non-inoculated seedlings.

INTRODUCTION

Pine species (*Pinus koraiensis*, *P. densiflora* and *Larix kaempferi*) can survive and grow on the nutrient-poor soil and after disturbances with symbiosis of ectomycirrhizae, such as *Pisolithus tinctorius* (*Pt*) and others [*Smith and Read*, 1997]. With increasing atmospheric CO₂ concentrations the pattern and amount of precipitation are now predicted to undergo great changes [*IPCC.*, 1996]. Symbiosis with ectocymorrhizae usually act as an efficient root system for absorbing water and essential nutrients (nitrogen and phosphate) [*Smith and Read*, 1997; *Quoreshi et al.*, 2003]. The photosynthetic adjustment in down-wards is frequently observed in plants grown under high CO₂ concentration, because of dilution effects of nutrient reduction of enzyme activities, enhanced accumulation of photosynthetic algustment is should be enhanced at high CO₂ concentration because symbiotic ectomycorrhiza provide water and essential elements, and also act as a large carbon sink [*Ceulemans and Mousseau*, 1994]. Therefore, we hypothesis that the inoculation of ectomycorrhiza increase physiological activity and growth of host plants without down-regulation under high CO₂ concentration. To tackle this hypothesis, the three pine species were inoculated with ectomycorrhiza and cultivated at high CO₂ concentration.

MATERIALS AND METHODS

The seedlings of *Pinus koraiensis*, *P. densiflora* and *Larix kaempferi* were grown in a phytotron at the Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo (Japan) with a natural sunlight, day/night temperature range of 26/16 °C and humidity range of 55 –75 % during the study period lasting 18 weeks. The seedlings inoculated with each ectomycorrhiza, e.g. *Pisolithus tinctorius* (Pers.) Coker et Couch (*Pt*) and Diehard Ecto drench (EC) – (*Pt* + *Rhizopogon* spp. + *Laccaria* spp. + *Scleroderma* spp.), were naturalized in a rhizo-box. The rhizo-boxes were allocated at random such that half of the seedlings experienced ambient CO₂ (360 μ mol·mol⁻¹) and the other half experienced elevated CO₂ (720 μ mol·mol⁻¹) [*Koike*, 1995]. After 18 weeks, the net photosynthetic rates were examined using an open gas exchange system (LI-6400, Li-Cor, Lincoln, NE) at PAR saturation (1000 – 1200 μ mol·m⁻²s⁻¹), 25 °C of the leaf temperature and 50 – 70 % of the relative humidity. And then, the inoculation rate of ectomycorrhiza (IRE) was determined according to the following formula:

IRE (%) = ER/(ER+NR)100

where EF and NR respectively denote the number of ectomycorrhizal and non-ectomycorrhizal roots. Shoot and root dry mass of each seedling was measured after dried at 60 °C for 1 week using an electronic balance (HR-202, A&D, Japan). The dried samples were then ground to a fine powder in a vibrating sample mill (Wonder Blender, Osaka Chemical Co., Osaka, Japan). To determine the concentration of phosphorus (P), the samples were digested by a microwave digestion system (O·I analytical, College Station, TX) and then used for ICP analysis (IRIS, Jarrel Ash, Franklin, MA, USA).

RESULTS AND DISCUSSION

After 18 weeks, Pt or EC inoculation had led to significantly increase in dry mass and stem diameter of *P. densiflora* and *L. kaempferi* at both CO₂ concentrations, relative to non-inoculated seedlings. In *P. koraiensis*, Pt or EC inoculation increased significantly the dry mass and stem diameter relative to non-inoculated seedlings grown at elevated CO₂ concentration. Moreover, elevated CO₂ increased significantly the ectomycorrhizal development. The phosphate concentration (P) in needles of *P. densiflora* and *L. kaempferi* inoculated with Pt or EC was significantly higher than that without inoculation at both CO₂ concentrations. However, we did not find any difference in P concentration. The PAR saturated net photosynthetic rates (P_{sat}) of *P. koraiensis*, *P. densiflora* and *L. kaempferi* inoculated with Pt or EC were clearly higher than that of non-inoculated seedlings at both CO₂ concentrations, and the maximum net photosynthetic rate at saturated CO₂ concentration (P_{max}) was higher than that of non-inoculated seedlings (Fig. 1).

Fig. 1. Maximum net photosynthetic rate at saturated CO₂ concentration (Pmax) in the needles of *P. koraiensis*, *P. densiflora* and *L. kaempferi* seedlings. NE represented non-inoculated seedlings. *Pt* and EC represented seedlings by *Pisolithus tinctorius* or Ectodrench, respectively.

Moreover, the carboxylation efficiency (CE) and RuBP regeneration rate of the A/C_i curve for *P. densiflora* and *L. kaempferi* inoculated with *Pt* or EC were significantly higher than those of non-inoculated seedlings at both CO₂ concentrations and *P. koraiensis* at elevated CO₂ concentration, especially inoculated with EC. The water use efficiency (WUE) of seedlings inoculated with *Pt* or EC grown at both CO₂ concentrations was significantly raised. Moreover, net photosynthetic rate of non-inoculated seedlings grown for 18 weeks at elevated CO₂ concentration tended to be down regulated; in contrast, *Pt* or EC inoculated seedlings showed no down-regulation at elevated CO₂ concentration. The activity of ectomycorrhiza may therefore enhance physiological function related to water and phosphate absorption in *P. koraiensis*, *P. densiflora* and *L. kaempferi* seedlings at elevated CO₂ concentration. Consequently the dry mass and stem diameter of inoculated *P. koraiensis*, *P. densiflora* and *L. kaempferi* seedlings at elevated CO₂ concentration.

REFERENCES

- Ceulemans, R. and Mousseau, M. (1994), Effects of elevated atmospheric CO₂ on woody plants. New Phytologist, 127, 425-446.
- Farrar, J.F. and Williams, M.L. (1991), The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. *Plant Cell and Environment*, 14, 819-830.
- IPCC. (1996), Climate change 1995: The science of climate change, Summary for Policymakers. Cambridge University Press, New York.
- Koike, T. (1995), Effects of CO₂ in interaction with temperature and soil fertility on the foliar phenology of alder, bitch and maple seedlings. *Canadian Journal of Botany*, 73, 149-157.
- Quoreshi, A.M. (2003), Nutritional preconditioning and ectomycorrhizal formation of *Picea mariana* (Mill.) B.S.P. seedling. *Eurasian Journal of Forest Research*, 6, 1-63.
- Smith, S.E. and Read, D.J. (1997), Mycorrhizal Symbiosis. Academic Press, San Diego.