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ABSTRACT 
Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined to form the tracer 
Atmospheric Potential Oxygen (APO), reflecting primarily ocean biogeochemistry and atmospheric 
circulation. Building on the work of Stephens et al. [1998], we present a new set of APO observations 
including shipboard collections from the equatorial Pacific.  Our data show a smaller interhemispheric 
gradient than observed in past studies and a substantial APO maximum around the equator.  Following a 
modeling approach developed by Gruber et al. [2001], we compare these observations with APO fields 
generated by a set of oceanic and atmospheric models.  Overall, our model results agree well with 
observations, but small differences suggest that modeled north-south transport may be too vigorous, air-
sea fluxes may be too coarsely resolved in some regions, and seasonal trapping of surface fluxes may be 
excessive in some model locations. 
 
Our dataset comprises measurements of atmospheric O2/N2 and CO2 from the cooperative air sampling 
networks run by Princeton University and Scripps Institution of Oceanography [Bender et al., 2005; 
Keeling et al., 1998].  Our data cover the period from 1996-2003 and include observations taken on ships 
of opportunity sailing in central Pacific during this time.  In addition to the O2/N2 and CO2 values, many 
of these samples have associated Ar/N2 measurements.  We use these Ar/N2 measurements to correct the 
O2/N2 values for site-specific biases, since the true spatial gradients in Ar/N2 are expected to be very 
small [Keeling et al., 2004], and processes which bias the Ar/N2 values tend to also bias O2/N2. 
 
Using these observations, we create a climatological annual-mean north-south gradient in APO. The data 
are somewhat sparse both temporally and spatially, so we adopt two different methods of filling gaps: a 2-
dimensional interpolation scheme and a set of fits to seasonal cycles.  Both give similar results (Fig. 1). 
 
To interpret these gradients, we follow the method developed by Gruber et al. [2001], and use empirically 
based estimates of air-sea O2, N2 and CO2 fluxes as the lower boundary condition for the TM3 
atmospheric model [Heimann and Körner, 2003].  We process the model output and data identically. 
 



The dominant feature of the observations is a low-latitude maximum in APO, reflecting the vigor of 
equatorial upwelling and accompanying fluxes of nutrients, dissolved gasses and heat. There is also a 
small interhemispheric gradient. Both of these features are reproduced well by our model.  We have also 
examined the climatological seasonal cycles of APO at various locations, which are generally matched by 
the model.  Some data-model differences do exist, but comparison with other work shows that the choice 
of atmospheric transport model can change the modeled APO values enough to resolve many of the data-
model discrepancies.  Another possible explanation for some of these differences is the limited spatial 
resolution with which the air-sea gas fluxes are resolved. Finally, we note that our observed 
interhemispheric gradient is significantly smaller than earlier studies, pointing to a significant temporal 
trend in this quantity. 

 
Fig. 1: Observations and models of the north-south APO gradient.  The left panel shows a 2-dimensional 
interpolation between observations. Lines are determined by both the land stations and shipboard data 
(not shown). The right panel shows values derived from fits to seasonal cycles.  Error bars reflect only 
uncertainty in the fits to the seasonal cycles and lines between points simply guide the eye. 
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