How reliably can we estimate inter-annual changes in global emissions of long-lived trace gases from atmospheric measurements?

Steve Montzka1, Geoff Dutton1,2, Eric Ray2,3, Robert Portmann3, Martyn Chipperfield4

1NOAA Global Monitoring Laboratory, USA
2CIRES, Univ. of Colorado, USA
3NOAA Chemical Sciences Laboratory, USA,
4Univ. of Leeds, UK

Thanks to:

S. Davis3, W. Feng4 (3-D modeling)

Station personnel at NOAA sites and cooperative institutes, and

\& the AGAGE community of scientists

NOAA-GML’s virtual Global Monitoring Annual Conference
22 June 2020
CFC-11 global emission derived from remote atmospheric measurements

Hourly measurements at 5 sites
Weekly measurement at 12 sites

Emissions derived with simple mass balance considerations (3-box-model analysis):

\[\frac{dG_{F11}}{dt} = \text{Emission} - k \times G \]

Are these inter-annual changes real?
Is the 2017-2018 difference robust?

Uncertainties (2 to 4 Gg yr\(^{-1}\)) include measurement precision & consistency, atmospheric variability, & an estimate of network representation of the true global surface mean
Uncertainties (2 to 4 Gg yr\(^{-1}\)) don’t explicitly include:

* **calibration consistency:**
 0.1% error in annual mole fraction
 \(\rightarrow\) 5 Gg yr\(^{-1}\) emission error
 - NOAA inter-annual calibration consistency is \(~0.03\%\)
 - Annual global mean variability (NOAA vs AGAGE) is also \(~0.03\%\)

or

* **Variability in atmospheric transport and dynamics**
 particularly between loss region and measurement locations at Earth’s surface
Investigating the influence of variability in dynamics and air transport on derived emissions (e.g., see Ray et al., 2020*)

From the observations,
- derive a smoothed emission history
- use the smoothed emission history as input to:

1) a simple 3-box model
2) two 3-D global models using different meteorology

Then:
Assess measured vs. simulated mole fraction rates of change

Using the smoothed emission history as input:
Simulated hemispheric mean mole fraction rates, CFC-11 (12-month smoothed)
Using the smoothed emission history as input:
Simulated hemispheric mean mole fraction rates, CFC-11 (12-month smoothed)

From 3-box model
From 3-D model WACCM using specified dynamics from MERRA2
Using the smoothed emission history as input:
Simulated hemispheric mean mole fraction rates, CFC-11 (12-month smoothed)

1) Inter-annual variability in model is similar to what is measured
2) Phasing of variations in model often captures what is measured

From 3-box model
From 3-D model WACCM using specified dynamics from MERRA2
From measurements, 8 sites in NH, 4 sites in SH
Using the smoothed emission history as input:
Simulated hemispheric mean mole fraction rates, CFC-11 (12-month smoothed)

And with a different 3-D model:

Next:
Derive emissions from 3-D model-simulated mole fractions, to estimate dynamics-induced biases on box-model emissions.

From 3-box model
From 3-D chemical transport model TOMCAT with ERA5
From measurements, 8 sites in NH, 4 sites in SH
Dynamics-related biases on inferred CFC-11 emissions obtained from the difference between:

* Smoothed input emissions &
* Emissions derived from 3-D model-simulated mole fractions

From both models:

Inter-annual changes
- typically have the same sign,
- often a similar magnitude:
 - mean inter-annual bias: 5 Gg yr\(^{-1}\),
 - as high as 15 Gg yr\(^{-1}\)
 (compared to 2 - 4 Gg yr\(^{-1}\) uncertainty)

WACCM suggests a significant shift in 2000, reflecting a known perturbation in the stratospheric circulation (Randel et al., 2006)
Inferred global CFC-11 emissions including dynamics-related biases derived from 3-D models

From WACCM

From TOMCAT

→ Smoother emission changes implied after 2010, perhaps to be expected

Pre-2010 variability is sometimes enhanced
→ real?
Enhanced errors in observations or models?
Summary:

Improvements in measurement capabilities (precision, consistency, global coverage) yield uncertainties in derived annual emissions of 2 to 4 Gg yr\(^{-1}\) are implied.

3-D models with reanalysis meteorology suggest that larger biases in year-to-year emission changes can stem from variability in dynamics.

→ some dynamics-related biases can persist for multiple years (post 2000)

Models do a good job of simulating measured interannual variability in mole fraction trends in some years, not all.

Assessing emission changes on a year-to-year basis, (e.g., for rapid feedback to policymakers) requires an accurate estimate of these non-emissive influences on derived global emissions.
NH vs SH rates from 3-D models:

Much of the variability has similar phasing in the two hemispheres

→ variability out of phase less often (N–S exchange?)

→ implying source of variability as begin the BDC or strat-trop exchange (e.g., QBO as in Ray et al., 2020).
Looking at uncertainties: measurement precision at ppt-levels.

→ mean replicate injection precision vs. mole fraction:

![Graph showing replicate injection precision vs. ambient mole fraction (ppt) for various compounds: CH₃I, CH₃CCl₃, CH₂Cl₂, CFC-11, HCFC-22. The graph indicates precision percentages ranging from 0.1% to 10.0%.](image)
Estimating uncertainty in global mean mole fraction from 12 measurement sites:

a) Annual site means (X_j) are derived from a random draw of monthly mole fractions given the measured s.d. (σ).

b) Sites used in estimating a global mean (G) and randomly chosen.

c) Multiple network representations give an estimate of G and σ

Use $G \pm \sigma$ in simple box model to estimate emission uncertainty.

Bootstrap analysis with replacement; Dlugokencky et al., 1994
Looking at uncertainties: atmospheric variability.

CFC-11

- Individual sites

Answer: ~0.03% at 1 s.d.

NOAA / AGAGE monthly ratio

- NOAA: 4 – 5 samples/month
- 8-12 sites
- AGAGE: 300 samples/month
- 5 sites
- 2010-2015

Which is similar to our (NOAA) estimate of inter-annual calibration consistency.

Errors of ± 0.03% → ± 1.5 Gg on annual emission