Constraints from long-term observations on the future of the global carbon cycle

Martin Heimann
Max-Planck-Institute for Biogeochemistry, Jena, Germany
Anthropogenic Perturbation of the Global Carbon Cycle

Keeling et al., 2005, updated
Interhemispheric CO$_2$ concentration gradient tracks fossil fuel emissions

\[C_n - C_s = (Q_n - Q_s) \tau / 2 \]
Key carbon cycle observations: Radiocarbon (14C)

Levin and Hessheimer, 2001
Direct response of the global carbon cycle to the anthropogenic perturbation

- Emissions from burning of fossil fuels and cement production
- Changes in landuse and land management

CO2

Atmosphere

Ocean

Landbiosphere
Observed anthropogenic CO$_2$ inventory in word ocean (~ mid 1990s)

Fig. 1. Column inventory of anthropogenic CO$_2$ in the ocean (mol m$^{-2}$). High inventories are associated with deep water formation in the North Atlantic and intermediate and mode water formation between 30° and 50°S. Total inventory of shaded regions is 106 ± 17 Pg C.

Inventories
- Global: 118 PgC
- North Atlantic: 27 PgC

Estimated uptake rates (1980-2000):
- Global: 1.85 PgC yr$^{-1}$
- North Atlantic: 0.42 PgC yr$^{-1}$

Sabine et al., 2004
Mid- and long-term response of carbon cycle to direct perturbation

Atmosphere fraction after pulse injection at $t=0$

Ocean dominated uptake

2000 PgC

Effect of ocean chemistry

6 PgC

Si + CaCO$_3$ weathering

time constant:

~30kyr

~0.15

~0.05

100kyr

Years

0 200 400 600 800 1000 1200

Hoos et al., 2001

Archer, 2005
Stabilization of atmospheric CO$_2$

No climate feedbacks

Figure 10.21.

- **(a)** Cumulative emissions for the period from 2000 to 2100 (to stabilize atmospheric CO$_2$ concentration at 450 ppm, etc.) as simulated by three trajectories and the use of a dynamic ocean model (Joos et al., 2001; Plattner et al., 2001; see Table 8.3 for model details) and the BERN2.5CC carbon cycle EMIC (Joos et al., 2001; Plattner et al., 2001; triangles) for the three stabilisation scenarios without accounting for the climate-carbon cycle feedback. As detailed above, the climate-carbon cycle models. As detailed above, the climate-carbon cycle feedback will have an impact on the estimate of the projected CO$_2$ concentration for. (d) The difference between (b) and (c) showing the impact of the climate-carbon cycle feedback highlighted in the C$_4$F$_8$ suite of simulations covering carbon cycle uncertainty, even including the upper bound, which is based on rather extreme assumptions here compared to the TAR.

- **(b)** Uncoupled emissions required to achieve stabilisation. In this case, the higher the stabilisation scenario, the larger the climate change, the larger the emission reduction relative to the case without climate-carbon cycle feedback reduces the land and ocean uptake of carbon.

Fig. 6. Carbon dioxide production rates as observed up to 1970, and as permitted after 1970 for an increase of the atmospheric excess in a prescribed way (a) to a maximum of 50 percent.

IPCC AR4, 2007

Siegenthaler and Oeschger, 1978
Carbon cycle - climate system feedbacks

- Emissions from burning of fossil fuels and cement production
- Changes in land use and land management
- CO2
 - Atmosphere
 - Ocean
 - Landbiosphere
- Climate
Basic terrestrial carbon cycle - climate system feedbacks
Basic terrestrial carbon cycle - climate system feedbacks
Model simulation of coupled carbon cycle - climate system

Simulated global carbon stock increases in atmosphere, ocean and land biosphere

- Coupled land
- Uncoupled land
- Coupled ocean
- Uncoupled ocean
- Coupled atmosph.
- Uncoupled atmosph.

Climate feedback:
- Atmospheric
- Land biosphere
- Carbon content

Year

Carbon uptake by land and ocean
Difference coupled - uncoupled simulation (2070-2100)

kgC m\(^{-2}\)

Raddatz et al., 2006
Coupled Carbon Cycle - Climate Model Simulation Experiments (C⁴MIP):

Predicted atmospheric CO₂ concentration

11 models, historical emissions after 2000: SRES-A2 emission profile

Decadal averages, smoothed
C4MIP simulations: Reproduction of atmospheric CO₂ increase

- 11 models,
- historical CO₂ emissions from fossil fuels and land use change

Uncoupled simulation

Coupled simulation

Observations (MLO+SPO)
Coupled Carbon Cycle - Climate Model Simulation Experiments (C⁴MIP)

11 models,
SRES-A2 emission profile

Decadal averages, smoothed

C⁴MIP Simulations, Friedlingstein et al., 2006
Coupled Carbon Cycle - Climate Model Simulation Experiments (C^4MIP):

Climate feedback effects on global uptake by land and ocean

11 models, SRES-A2 emission profile

Decadal averages, smoothed
Observed airborne fraction: \[\frac{\Delta N_{atm}}{Q_{emiss}} \]
When can we expect to see a clear climate feedback signal on global carbon cycle?

Decadal average airborne fraction simulated by C⁴MIP models

blue: uncoupled simulation
red: coupled simulation
Global CO₂ budget over the next 100 years: Based on C⁴MIP results

A2-SRES Emissions

Decadal averages, smoothed

C⁴MIP Simulations, Friedlingstein et al., 2006
Carbon cycle in the 21st century: Lessons from C^4MIP simulation experiments

- **Ocean:**
 - Uncertainty due to different mixing and circulation characteristics
 - Relatively small climate feedback

- **Land:**
 - Models assume substantial “CO₂ fertilization”:
 \[\beta = \frac{\Delta NPP}{NPP_0} = \frac{\Delta C}{C_0} = 0.2 - 0.6 \]
 - Strong climate feedback

- Carbon cycle - climate feedback gain, range of C^4MIP models:
 - 4 - 20% (10 models),
 - 31% (HadCM3LC)
Climate feedbacks: Implications for atmospheric CO₂ stabilization

Standard HadCM3LC climate sensitivity: 3 K

Uncertainty range from climate sensitivity 1.5 - 4.5 K

Uncertainty range from climate sensitivity + carbon cycle model parameters

Emission profiles of Wigley, 1996 (no feedbacks)

Jones et al., 2006
Vulnerability of carbon pools (100yr time scale)

1 PgC release ⇒ ~0.25 ppm atmospheric CO₂ increase (100yr time scale)

Gruber et al., 2006
Conclusions

- Currently observed (~linear) dynamics will change
- Present records do not yet exhibit enough information for quantification or validation of non-linear dynamics
- Current models exhibit still large differences -> Indication of insufficient process knowledge
- Many vulnerable pools and biogeochemical processes not yet represented in current Earth system models (a.o. permafrost, wetlands, fire, nutrients, ozone, CH4,...)
- Effects of changes in land use and management not yet included
- Comprehensive assessment: Biogeochemical + biophysical feedbacks!
- 100yr time scale carbon cycle - climate feedbacks: positive, ~20% effect
Thank you