This is not the latest CarbonTracker update! Link to latest.
 
CarbonTracker CT2011_oi
CarbonTracker is a CO2 measurement and modeling system developed by NOAA to keep track of sources (emissions to the atmosphere) and sinks (removal from the atmosphere) of carbon dioxide around the world. CarbonTracker uses atmospheric CO2 observations from a host of collaborators and simulated atmospheric transport to estimate these surface fluxes of CO2. The current release of CarbonTracker, CT2011_oi, provides global estimates of surface-atmosphere fluxes of CO2 from January 2000 through December 2010. CT2011_oi is a revision to the CT2011 release, developed to correct a problem in that product.

What is CarbonTracker?
A system to keep track of carbon dioxide uptake and release at the Earth's surface over time. [read more]

Who needs CarbonTracker?
Policy makers, industry, scientists, and the public need CarbonTracker information to make informed decisions to limit greenhouse gas levels in the atmosphere. [read more]

What does CarbonTracker tell us?
North America is a source of CO2 to the atmosphere. The natural uptake of CO2 that occurs mostly East of the Rocky Mountains removes only about 30% of the CO2 released by the use of fossil fuels. [read more]

What's new in this release of CarbonTracker?    NEW!
The 2011 release of CarbonTracker ("CT2011_oi") uses multiple models to explicitly estimate the influence of first-guess fluxes ("priors") on our final result. It also includes observations and flux estimates through the end of 2010. [read more]

CarbonTracker CO2 weather for June-July, 2008. Warm colors show high atmospheric CO2 concentrations, and cool colors show low concentrations. As the summer growing season takes hold, photosynthesis by forests and crops draws concentrations of CO2 down, opposing the general increase from fossil fuel burning. The resulting high- and low-CO2 air masses are then moved around by weather systems to form the patterns shown here. [More on CO2 weather]
Executive Summary

Estimates of CO2 sources and sinks over North America
From 2001 through 2010, ecosystems in North America have been a net sink of 0.7 ± 1.3 PgC yr-1 (1 Petagram Carbon equals 1015 gC, or 1 billion metric ton C, or 3.67 billion metric ton CO2). This natural sink offsets about one-third of the emissions of about 1.9 PgC yr-1 from the burning of fossil fuels in the U.S.A., Canada and Mexico combined (Figure 1).

Figure 1. Annual total emissions from North America. The bars in this figure represent CO2 emissions for each year in PgC yr-1 from the U.S.A., Canada, and Mexico combined. See map on this page.
CarbonTracker models four types of surface-to-amosphere exchange of CO2, each of which is shown in a different color: fossil fuel emissions (tan), terrestrial biosphere flux excluding fires (green), direct emissions from fires (red), and air-sea gas exchange (blue).
Negative emissions indicate that the flux removes CO2 from the atmosphere. The net surface exchange, computed as the sum of these four components, is shown as a thick black line.

Whereas fossil emissions are generally steady over this period, ranging between 1.8 and 1.9 PgC yr-1, the amount of CO2 taken up by the North American biosphere varies significantly from year to year. In terrestrial biosphere models, inter-annual variability in land uptake can be related to anomalies in large-scale temperature and precipitation patterns. While the CarbonTracker period of analysis is relatively short compared to the dynamics of slowly-changing pools of biospheric carbon, episodes of extremes in net ecosystem exchange (NEE) have been associated with climatic anomalies (see e.g. Peters et al., 2007). It is interesting to note that the inferred year-to-year variabilty (the "range") of land uptake is actually as big as the mean sink itself.

The year with the smallest annual uptake by terrestrial ecosystems in North America was 2002, when there was widespread drought in the U.S. west. During this year, land ecosystems accounted for a sink of only 0.2 PgC yr-1. This reduced land sink is largely responsible for 2002 being the year in the CarbonTracker record with the largest input of CO2 to the atmosphere from North America, when net emissions reached 1.7 ± 0.6 PgC yr-1.

In contrast, our observing system did not detect an effect from the 2007 drought in the U.S. Southeast. This is likely due to lack of coverage of the area (Figure 3) in our current observing network. New observations in CT2011_oi compared to CT2009, however, do lead to interesting differences in this region for 2008. For CT2011_oi in 2008, the U.S. Southeast represents a distinct source of carbon dioxide to the atmosphere, whereas CT2009 fluxes for this same place and time are equivocal.

In CT2011_oi, we find that 2003, 2004, and 2009 were the years with the largest North American land sink, with ecosystems taking up about 0.9 - 1.1 PgC yr-1—a land sink that is about 36% bigger than the average. Fossil fuel emissions from North America were also slightly reduced in 2009 compared to earlier years as a result of the economic downturn. As a result, ecosystems removed about half of fossil fuel emissions over North America in 2009, and this was the year with the lowest net input of CO2 to the atmosphere from North America. This 2009 net annual emission was 0.9 ± 1.4 PgC yr-1, about 25% smaller than the average of 1.2 ± 1.1 PgC yr-1. This is the first year since the beginning of the CarbonTracker record in 2000 for which the net flux from North America has fallen below 1 PgC yr-1.

Spatial distribution of surface fluxes
CarbonTracker flux estimates include sub-continental patterns of sources and sinks coupled to the distribution of dominant ecosystem types across the continent (Figure 2). We have greater confidence in countrywide totals than in estimates of regional sources and sinks, but we expect that such finer-scale estimates will become more robust with future expansion of the CO2 observing nework. Our results indicate that the sinks are mainly located in the agricultural regions of the Midwest (36%), deciduous forests along the East Coast (33%), and boreal coniferous forests (17%).

Figure 2. Mean ecosystem fluxes. The pattern of net ecosystem exchange (NEE) of CO2 of the land biosphere averaged over 2001-2010, as estimated by CarbonTracker. This NEE represents land-to-atmosphere carbon exchange from photosynthesis and respiration in terrestrial ecosystems, and a contribution from fires. It does not include fossil fuel emissions. Negative fluxes (blue colors) represent CO2 uptake by the land biosphere, whereas positive fluxes (red colors) indicate regions in which the land biosphere is a net source of CO2 to the atmosphere. Units are gC m-2 yr-1.



Word of caution about high-resolution biological flux maps
Figure 2 shows estimated fluxes by ecoregion. While we also provide flux maps and data with a finer 1° x 1° spatial resolution, for example on our flux maps pages, these ecoregions define the actual scales at which CarbonTracker operates. With the present observing network, the detailed one-degree fluxes should not be interpreted as quantitatively meaningful for each block. Any within-ecoregion patterns come directly from results of the terrestrial biosphere model. Part of this high-resolution patterning comes from variations of temperature, precipitation, light, plant species, and soil type over each ecoregion. To spread the influence of measurements from the sparse observation network, CarbonTracker makes adjustments uniformly over an entire ecoregion. These adjustments scale the net ecosystem flux of CO2 predicted by the terrestrial biosphere model by the same factor across each ecoregion. Thus we caution that the 1° x 1° spatial detail in CarbonTracker land fluxes is based on the simulations of the terrestrial biosphere model and the assumption of large-scale ecosystem coherence. This has not been verified by observations.

The CarbonTracker observing system
CarbonTracker surface flux estimates are optimally consistent with measurements of ~36,100 flask samples of air from 81 sites across the world, ~33,900 four-hourly averages of continuously measured CO2 at 13 sites (10 in North America, plus observatories at Mauna Loa, Hawaii; Barrow, Alaska, South Pole; and American Samoa), and ~15,100 four-hourly averages from towers at 9 locations within the continent (see Figure 3). Eight of these towers sample air from heights more than 100m above ground level.
Figure 3. CarbonTracker Observational Network Click on any site marker for more information. Double-click on a site marker to center the map on that site.

Calculated time-dependent CO2 fields throughout the global atmosphere
A "byproduct" of the data assimilation system, once sources and sinks have been estimated, is that the mole fraction of CO2 is calculated everywhere in the model domain and over the entire 2000-2010 time period, based on the optimized source and sink estimates (Figure 4). As a check on model transport properties and CarbonTracker inversion performance, calculated CO2 mole fractions are regularly compared with measurements of ~31,000 air samples taken by NOAA/ESRL at 26 aircraft sites, which are not used in the estimation of optimized sources and sinks.

Since CarbonTracker simulates CO2 throughout the entire atmospheric column, the model atmosphere can be sampled exactly like satellite retrievals of CO2. Such estimates are generally more sensitive to the CO2 mole fraction in some parts of the atmosphere than in others, and by using a vertical profile of this sensitivity, a direct analog of the satellite estimate can be constructed.

Figure 4. Carbon dioxide weather Shown is the daily average of the pressure-weighted mean mole fraction of carbon dioxide in the free troposphere as modeled by CarbonTracker for March 20, 2009. Units are micromoles of CO2 per mole of dry air (μmol mol-1), and the values are given by the color scale depicted under the graphic. The "free troposphere" in this case is levels 6 through 10 of the TM5 model. This corresponds to about 1.2km above the ground to about 5.5km above ground, or in pressure terms, about 850 hPa to about 500 hPa. Gradients in CO2 concentration in this layer are due to exchange between the atmosphere and the earth surface, including fossil fuel emissions, air-sea exchange, and the photosynthesis, respiration, and wildfire emissions of the terrestrial biosphere. These gradients are subsequently transported by weather systems, even as they are gradually erased by atmospheric mixing.


Flux uncertainties
It is important to note that at this time the uncertainty estimates for CarbonTracker sources and sinks are themselves quite uncertain. They have been derived from the mathematics of the ensemble data assimilation system, which requires several educated guesses for initial uncertainty estimates. The paper describing CarbonTracker (Peters et al. (2007), Proc. Nat. Acad. Sci. vol. 104, p. 18925-18930) presents different uncertainty estimates based on the sensitivity of the results to 14 alternative yet plausible ways to construct the CarbonTracker system. For example, the 14 realizations produce a range of the net annual mean terrestrial emissions in North America of -0.40 to -1.01 PgC -1 (negative emissions indicate a sink). The procedure is described in the Supporting Information Appendix to that paper, which is freely downloadable from the PNAS web site.

Furthermore, the estimates do not take into account several additional factors noted below. The calculation is set up for sources and sinks to slowly revert, in the absence of observational data, to first guesses of net ecosystem exchange, which are close to zero on an annual basis. This set-up may result in a bias. Also due to the sparseness of measurements, we have had to assume coherence of ecosystem processes over large distances, giving existing observations perhaps an undue amount of weight. The process model for terrestrial photosynthesis and respiration was very basic, and will likely be greatly improved in future releases of CarbonTracker. Easily the largest single annual mean source of CO2 is emissions from fossil fuel burning, which are currently not estimated by CarbonTracker. We use estimates from emissions inventories (economic accounting) and subtract the CO2 mole fraction signatures of those fluxes from observations. As a result, the biosphere and ocean fluxes estimated by CarbonTracker inherit error from the assumed fossil fuel emissions. While these emissions inventories may have a small relative error on global scales (perhaps 5 or 10%), any such bias translates into a larger relative error in the annual mean ecosystem sources and sinks, since those fluxes have smaller magnitudes. We expect to add a process model of fossil fuel combustion in future releases of CarbonTracker. Finally, additional measurement sites are expected to lead to the greatest improvements, especially to more robust and specific source/sink results at smaller spatial scales.


Consistency of modeled and observed atmospheric CO2 growth rates
Global atmospheric CO2 growth rates inferred directly from observed carbon dioxide at marine surface sites are consistent with those modeled by CarbonTracker, both in their average values and in their year-to-year variations (Figure 5). These global growth rates continue to hover at around 4 PgC yr-1, or around 1.9 ppm yr-1 (Figure 5). The 2009 growth rate modeled by CarbonTracker was below average at 3.4 ± 3.1 PgC yr-1. This was not due to a significant decrease in fossil fuel emissions, as can be seen from estimates of global fluxes used in CarbonTracker. Instead, the most notable difference for the 2009 atmospheric growth rate appears to be reduced biomass burning fluxes from the tropics and southern hemisphere, which at 1.4 PgC yr-1 are about 0.5 PgC yr-1 below their 2001-2009 mean of 1.9 PgC yr-1.


Figure 5. Atmospheric CO2 growth rates. Observed atmospheric CO2 growth rates (source: NOAA ESRL page on global trends in CO2) are plotted against the atmospheric CO2 growth rate inferred from CT2011_oi global fluxes. Note that error bars on the observed growth rates are relatively small and may not be visible on this plot.

Notice: CT2011_oi is a revision to CT2011.   After we released CarbonTracker 2011, a significant bug was discovered in our atmospheric transport model. We have corrected the bug and are releasing revised results under the release name "CT2011_oi". Use of the original CT2011 results is strongly discouraged.
After the original release of CT2011, a significant bug was discovered in the TM5 transport model. When sampling data for output, the model was incorrectly accounting for its variable time-step. As a result, rapidly-varying quantities were subject to biased sampling. Due to their strong diurnal cycle, terrestrial biosphere fluxes are especially susceptible to this sampling bug. Fluxes modeled with no diurnal cycle--fossil fuel and wildfire emissions--were not affected by the bug.

CO2 fields sampled from our model are also subject to this sampling bug, but the impact is negligible since variability in total CO2 is relatively small, even at the surface. Mole fraction products for CT2011_oi have had this sampling bug corrected, but the inversions on which CT2011_oi is based still used biased sampling for assimilation data. Tests indicate that the impact of biased sampling of observational constraints on estimated fluxes is very small. Nevertheless, future releases of CarbonTracker will also correct this sampling issue for assimilation data.

We have also discovered that the sampling bug was masking an issue with one of our ocean flux prior models. The "climatological" ocean pCO2 field based on Takahashi et al. (2009) was applied with an erroneously tight prior covariance. As a result, we have had to remove the four inversions based on the climatological ocean prior from our suite. CT2011_oi results are based on the four inverse models using the "ocean inversion" flux prior. See the ocean module documentation for details.

Due to details of code structure, previous releases of CarbonTracker fluxes were not affected by this bug. CT2011 was the only release with faulty sampling of fluxes.

CT2011_oi methodological differences

CT2011_oi uses multiple "priors", or first-guess surface fluxes of CO2. In the CarbonTracker inversion system, first-guess fluxes are modified by comparison with observed atmospheric CO2 mole fractions. In any such Bayesian estimation system, the final flux result reflects, to some extent, influence of the prior. To evaluate the impact of the prior estimate on our final estimated fluxes, we have conducted eight independent simulations, each of which uses a unique combination of flux priors. This factorial design uses two different fossil fuel emissions estimates, two land biosphere models, and two air-sea exchange models one air-sea exchange model. We report here a statistical summary of that collection of simulations. Importantly, the reported uncertainty incorporates differences computed from this suite of eight four independent simulations. Further information on the multi-model analysis is available in the CT2011_oi documentation.

Unlike CT2010, this release of CarbonTracker is a full reanalysis of the 2000-2010 period.

Details of these methodological differences are presented in the CT2011_oi documentation.

2007 CarbonTracker PNAS publication


CarbonTracker is a NOAA contribution to the North American Carbon Program