


LA Basin 1*CO, sampling sites
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What you need to know about radiocarbon (14C)

1. Produced via cosmic rays; absorbed by photosynthesis;
decay with a half-life of ~6000 yrs.

2. - Fossil fuels have no 4C; but 4C,;  ~ 14C_, ...

3. = CO, variations can be split into bio and fossil using 4C.

4. Low concentrations: [14CO,] ~ 400 x 10 mol/mol;
measured by Accelerator MS on 2 liters of air.

5. 14C/C expressed as A = [(}*C/C)/R 4 — 1]1000 in “per mil”



Measurements of local and background CO, and A!4C
allow us to determine Ci and C, ;..

CO,xs
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CO, and %CO, data show large variations with a clear
fossil fuel contribution.
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Isotopic mixing analysis shows substantial biogenic
contrlbutlon _
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Pure fossil slope =-1000 per mil
Slope (Isotopic source) = -783 per mil = CO,xs is ~ 20% biogenic



Biospheric contribution to total CO, is substantial.
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C,., has a lot of biofuel and human respiration

Sector Fossil (TgC/yr) Bio (TgC/yr)

Residential 2.85 0.37
Commercial 2.46 0.11
Industrial 11.48 1.91
Electricity Production 5.47 0.81
On-road 19.47 1.50
Other 3.99 0.01
Total 45.72 4.72

State of CA inventory and Vulcan 3.0
Biofuel:Fossil-Fuel Emission Ratio = 0.10

So. Cal. Population

Respiration+Excretion |Fossil emissions

(TgC/year)

(TgC/yr)

18,609,235

2.62 45.21

Human Bio:Fossil Emission Ratio = 0.06

Total Bio:Fossil Emission Ratio = R, = 0.16

For each sample, we define
Coio = Chio = Ruio X Ctf

which captures the signal
of the urban biosphere.
2 Chio ™ Cpio -2 PPM




Water Usage (Acre-Feet)
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Is such a large urban biospheric signal realistic?

 ~14% tree + turf in our footprint
* McPherson et al., 2011
e 12%irrigated lawn cover
* 21% tree cover
 Urban ecosystems: parks, lawns, golf courses, etc.
Within footprint of observations
e Only urban ecosystems can explain negative
Cbio
e Surrounding unmanaged ecosystems
* Fluxes mostly out of phase with urban

||||_ observations.

0 10 20 30 40 50 60 _ _
Percent Turf and Tree Cover  Generally outside footprint.

MODIS VCF and AVIRIS flights (Wetherly et al., 2018)
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Assuming all CO, enhancement is fossil leads to
seasonally varying errors.
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We can transform 1#C data to create a synthetic
continuous CO,ff time series using continuous CO.
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Summary and implications

1. LA CO,bio is seasonal and appears to be controlled by irrigation.

2. CO,xs provides a seasonally biased view of CO,ff.

1. Remote-sensing and in situ approaches for urban CO, fluxes need to account
for biospheric CO,.

3. Continued and widespread measurement of urban biosphere fluxes
will be required to isolate the fossil fuel emissions signal, even for
generally dry (or cold) areas. Some combination of 14C, CO and urban
biosphere modeling will probably be required.
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C.i, Sensitivity Tests
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'Natural’ ecosystem eddy-fluxes

% 1F E
- E E

N E
5 1F "\ 3
5 3 — Desert 3
E 3 \/ —— Oak-+Pine 3
ﬁ E — Grassland é
=z -3 E— —E
E — Pinyon+Juniper 3

4 E

1 2 3 4 5 6 7 8 9 10 11 12
Month

Southern California Climate Gradient study sites, Ameriflux, M Gouldern PI

17



LANDSAT 30 m Vegetation (EVI)
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LANDSAT 30 m EVI zoomed in shows even more.

- Google Earth (~¥50 cm) shows yet more.
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Wintertime biospheric CO, fraction averages ~50% for regions; ~

20% for
N. America
Europe
Asia b
) 56% )
42% 41% 50%
19% 72% 21% 51%
17% 52%
51%
45%

Thanks to: K. Rozanski, M. Zimnoch
(Poland); I. Levin (Germany); Morgan

Lopez(France); L. Zhou (China); Korea-China
Center for Atmos. Res.



Atmospheric 14CO, looks just like fossil CO,

-2.5 per mil A%C = 1 ppm CO,-fossil
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