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BACKGROUND

Over the past 60 years, flask and in situ CO, measurements at surface
sites have revealed large scale features of the global carbon cycle.

Driven by increasing observational density, much of the current top-down
research emphasizes estimating surface-atmosphere CO, fluxes on smaller
spatial and temporal scales.
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Figure |. CO, measured at Mauna Loa, Hawaii
(Keeling et al.,2001).
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Figure 2. (a) Simulated XCO2 and (b)
measurements from flask and in situ sites
396.0 (circles), TCCON (stars) and OCO-2 (tracks)
394.5 over North America on 17 July 2015.
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MEASUREMENTS

COMBINING SURFACE AND SPACE-BASED

Assimilating both surface- and space-based CO, measurements in a flux
inversion fills in observational gaps.

We performed a set of six-year flux inversions (2010-2015) assimilating
CO, measurements from GLOBALVIEW+,TCCON, and ACOS b7.3
GOSAT (nadir only). Performed ensemble of inversions three times
applying different prior NEE constraints (with no prior interannual
variability).

Posterior CO, fields were extensively evaluated against aircraft based
CO, measurements and gave data-model differences similar to inversions
assimilating surface-only or GOSAT-only observations (Byrne et al., 2019,
ESSOAr, 2019; email me for latest version).
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Figure 3. Number of measurements per day for surface-based
(Obspack PROTOTYPE) and space-based (GOSAT) observing

systems (Byrne et al., JGR-A, 2017).



INTERANNUAL VARIABILITY OVER
NORTH AMERICA

From the six-year posterior NEE fluxes we can examine the anomalies about a mean year:
N

1
ANEEy,qr = NEEyoqr — 172 NEE;
i=0

Inversions assimilating different combinations of datasets show differences in interannual variability (IAV).
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Figure 4. Two-week NEE anomalies over temperate North America for posterior NEE fluxes from inversions combining multiple datasets (green) and from
inversions assimilating single datasets (Byrne et al., ESSOAr, 2019; email me for latest version).




INTERANNUAL VARIABILITY OVER
NORTH AMERICA

From the six-year posterior NEE fluxes we can examine the anomalies about a mean year:
N

1
ANEEy,qr = NEEyoqr — 172 NEE;
i=0

Inversions assimilating different combinations of datasets show differences in interannual variability (IAV).

The combined inversion show seasonal compensation features.
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Figure 4. Two-week NEE anomalies over temperate North America for posterior NEE fluxes from inversions combining multiple datasets (green) and from
inversions assimilating single datasets (Byrne et al., ESSOAr, 2019; email me for latest version).




SEASONAL COMPENSATION OBSERVED IN
AGPP

Studies have found seasonal cycle compensation in AGPP based on NDVI, SIF, flux tower, and phenology measurements.

Does seasonal compensation in ANEE correspond to seasonal compensation in AGPP?
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SEASONAL COMPENSATION AND
AMPLIFICATION

Examine six-year IAV in GOSAT +surface+TCCON posterior NEE (2010-2015) over North America.

Examine |7-year of IAV in FluxSat GPP (2001-2017). FluxSat is a GPP product primarily using MODIS NBAR
measurements and is calibrated using Fluxnet and SIF measurements (Joiner et al., 2018).
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Figure 5. lllustration of amplification and compensation for NEE. (a) Positive amplification with no compensation, (b) no amplification with negative
compensation, (c) negative amplification with no compensation, and (d) no amplification with positive amplification (Byrne et al., ESSOAr, 2020). °



GPP

SEASONAL COMPENSATION OBSERVED IN

We do not expect the flux inversions to capture IAV on 4° X 5° grid. This provides a first look at the general spatial

structures in AGPP and ANEE.

In general, amplification dominates in West/Southwest and compensation dominates in East/Northeast.
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Figure 6. Relative magnitudes of seasonal compensation and amplification. (a) NEEgaTi0 over
2010-2015 and (b) GPPrari0 over 20012017 at 4° x 5° spatial resolution
(Byrne et al., ESSOAr, 2020).
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Figure 7.MODIS land cover types across North America



DOMINANT MODES OF IAV

Singular value decomposition (SVD) of month-by-year array of anomalies show the dominant modes of variability

between years.
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SVD analysis show that amplification

dominates in the west and compensation
dominates in the east for both AGPP and

ANEE.

Figure 9.The spatial extent of western (orange) and
eastern (yellow) regions of North America.

Figure 8. First and second singular vectors resulting from the decomposition of AGPP over 2001-2017 for the (i) western and (ii) eastern regions of
North America,and ANEE over 2010-2015 for the (iii) western and (iv) eastern regions of North America (Byrne et al., ESSOAr, 2020).
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AV IN CARBON FLUXES
AND CLIMATE

In West, amplification is associated with wetter-
cooler conditions.

In East, shift to earlier in the year is associated
with warmer spring.

These differences in IAV between the east and
west result in a similar magnitude of annual net
AGPP (104% of east) and ANEE (127% of east),
in spite of larger annual mean GPP and NEE in
the east. (Byrne et al., ESSOAr, 2020).

Figure 10. Seasonal cycles of GPP (2001-2017) and NEE (2010-2015)

1 |over eastern and western North America. (a) Seasonal cycles of (i-ii)
1| GPP and (iii-iv) NEE over western North America.(b) Seasonal cycles
1 | of (i-ii) GPP and (iii-iv) NEE over eastern North America. Colors

indicate the Apr-Sep AT ((i) and (iii)) or Apr-Sep AM ((ii) and (iv))
(Byrne et al., ESSOAr, 2020).



CONCLUSIONS

Increasing observational coverage from surface- and space-based CO, observing systems are driving advances in our
ability to detect changes in surface-atmosphere fluxes.

NEE constrained by surface- and space-based CO2 measurements suggest IAV in western North America is dominated
by an amplification component while IAV in eastern North America is dominated by a compensation component.

These results are supported by independent estimates of GPP IAV that give similar spatial and temporal variability.

Both GPP and NEE suggest variability in the west is dominated by moisture availability, while variability in the east is
most closely associated with temporal shifts in the seasonal cycle associated most closely with temperature.
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BACKUP — COMPARISON WITH MSTMIP

Mean summer GPP and net uptake are larger in the east than the west (7.6x for GPP, 3.5x for NEE)

However, AGPP and ANEE similar in the west and east (1.04xfor GPP and |.27xfor NEE).

Therefore, anomalies are a much larger fraction of the mean in the west.
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MsTMIP models show similar east/west
differences.

MsTMIP models tend to underestimate
the magnitude of the anomalies in the

west relative to the mean

Figure | 1. Scatter plots of (a) GPP and (b) NEE fluxes in
eastern and western North America.The panels show (i)
the magnitude of Apr-Sep mean fluxes, (ii) the magnitude of
Apr-Sep mean anomalies, and (jii) the ratio of the anomalies
to mean fluxes.The blue star shows the observationally-
based estimates from FluxSat GPP and the flux inversion
NEE.The error bars on the observationally-constrained
NEE estimate show the range in these values between the
three flux inversions.The large green circle shows the GPP
and NEE estimate from the MsTMIP model mean. Small
circles show the GPP and NEE estimates from individu
MsTMIP models. 6



