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1. INTRODUCTION 
 

This paper summarizes results of a winter 1998-99 
intercomparison of the forecasting capability of a 
number of clear-air turbulence (CAT) forecasting 
algorithms. This study was undertaken by the 
Turbulence Product Development Team (PDT) of the 
Federal Aviation Administration’s (FAA’s) Aviation 
Weather Research Program (AWRP). 

Purposes of the intercomparison were to (i) develop 
a baseline for the quality of current CAT forecasting 
algorithms; (ii) demonstrate to-date progress in the 
development of these forecasting tools; (iii) examine the 
strengths and weaknesses of the algorithms; and (iv) 
perform an evaluation that is independent, consistent, 
comprehensive, and fair. Implementation of the 
intercomparison and analyses of the results were the 
responsibility of the AWRP Quality Assessment Group, 
which includes the verification groups of the NOAA 
Forecast Systems Laboratory (FSL) and the National 
Center for Atmospheric Research, Research 
Applications Program (NCAR/RAP). 

The study consisted of two major components: (i) a 
real-time component, in which the algorithms were 
evaluated in near-real-time by FSL’s Real-Time 
Verification System (RTVS; Mahoney et al. 1997), with 
results displayed on the World-Wide Web; and (ii) a 
post-analysis component in which the forecasts were re-
generated and examined in detail at NCAR and FSL. 
This paper primarily concerns some results of the post-
analyses. However, example results from the RTVS 
evaluation for winter 2000 are shown in the final section. 

The paper is organized as follows. The study 
approach is presented in Section 2. Section 3 briefly 
describes the algorithms that were included in the 
evaluation. The data that were utilized are discussed in 
Section 4, and the verification methods are described in 
Section 5. Some results of the study are presented in 
Section 6. Finally, Section 7 contains conclusions and 
future work.  
 
2. APPROACH 
 

A total of 14 CAT algorithms were included in the 
real-time portion of the study, and results for a total of 
11 algorithms are presented here. The algorithms were 
applied to data from the RUC-2 (Rapid Update Cycle, 

Version 2) model (Benjamin et al. 1998), with model 
output obtained from the National Centers for 
Environmental Prediction.  Model forecasts issued at 
1200, 1500, 1800, and 2100 UTC, with lead times of 3, 
6, and 9 hr were included in the real-time portion of the 
study, but the analyses presented here are limited to the 
combinations of issue and lead time shown in Table 1. 
Turbulence AIRMETs, which are the operational 
turbulence forecasts issued by the National Weather 
Service’s Aviation Weather Center (NWS/AWC; NWS 
1991) were included for comparison purposes. Because 
the emphasis of the study concerned forecasting upper-
level CAT, the evaluation was limited to the portion of 
the atmosphere above 20,000 ft. The analyses included 
all forecasts available over the period 21 December 
1998 through 31 March 1999. 

Table 1. Issue and lead times used in post-analyses. 

Issue time 
(UTC) 

Lead times 
(hr) 

 
Valid times (UTC) 

1500 3, 6, 9, 12 1800, 2100, 0000, 0300 
1800 3, 6, 9 2100, 0000, 0300 
2100 3, 6 0000, 0300 
0000 3 0300 

 
The algorithm forecasts and AIRMETs were verified 

using Yes and No pilot reports (PIREPs) of turbulence. 
In addition, automated vertical accelerometer (AVAR) 
observations provided by certain United Airlines aircraft, 
were used as an indicator of No turbulence under 
certain conditions (described in Section 4). The 
algorithm forecasts were transformed into Yes/No 
turbulence forecasts by determining if the algorithm 
output at each model grid point exceeded or was less 
than a pre-specified threshold. A variety of thresholds 
was utilized for each algorithm. The Yes/No forecasts 
were evaluated using standard verification techniques 
available for Yes/No forecasts where observations are 
based on PIREPs, as described in Section 5 (Brown 
and Mahoney 1998). 
 
3. ALGORITHMS 
 

The 11 CAT algorithms that were included in this 
post-evaluation are listed in Table 2, along with 
references to the appropriate literature where they are 
described. The algorithms listed in Table 2 include 
standard turbulence metrics, such as Richardson 
number, as well as algorithms that have been recently 
developed (e.g., Ellrod Index, DTF3-5). The Integrated 
Turbulence Forecasting Algorithm (ITFA) is currently 
under development by the Turbulence PDT. ITFA uses 
fuzzy logic techniques to integrate turbulence 
observations with the forecasts provided by a suite of 
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turbulence indices, such as the others included in this 
study. Four additional algorithms that were included in 
the real-time intercomparison (Burke-Thompson, CCAT, 
Richardson tendency, and ULTURB) were not included 
in this post-analysis. These algorithms are described 
and evaluated in Brown et al. (1999b). In addition, 
ULTURB (McCann 1997), which also was included in 
the real-time intercomparison, was found to have errors 
that are being corrected; this algorithm will be included 
in future evaluations. Additional algorithms, such as 
Brown-2 (Brown 1973), two algorithms developed by the 
NWS (Reap 1996), and a statistically-based integrated 
algorithm (Tebaldi et al. 2000), also will be included in 
future analyses.  

One additional algorithm that was included in the 
analyses, but is not listed in Table 2 is a “Random” 
algorithm, which randomly assigns values in the range 
0-1 to each grid point. The purposes of including the 
Random algorithm were to  (i) determine that the 
verification software was functioning correctly and (ii) 
ascertain that the algorithms produce forecasts that are 
better than what could be attained through a random 
process. 

Table 2. Diagnostic algorithms included in the post-
analysis. 

Algorithm References 
Brown-1  Brown (1973) 
Colson-Panofsky  Colson and Panofsky (1965) 
DTF3, DTF4, DTF5 Marroquin (1985, 1988) 
Empirical Dutton Dutton (1980) 
Ellrod-1,2  Ellrod and Knapp (1992) 
Endlich  Endlich (1964) 
ITFA Sharman et al. (2000) 
Richardson number  Drazin and Reid (1981); Dutton and 

Panofsky (1970); Kronebach (1964) 
 
4. DATA 
 

Output from the RUC-2 model was used as input 
for the various algorithms. This model is the operational 
version of the Mesoscale Analysis and Prediction 
System (MAPS), Version 2 model, developed at FSL 
(Benjamin et al. 1998). The model vertical coordinate 
system is based on a hybrid isentropic-sigma vertical 
coordinate, and the horizontal grid spacing is 
approximately 40 km. The turbulence algorithms were 
applied to the model output files to create algorithm 
output files. As part of this process, the algorithm output 
data were interpolated to flight levels (i.e., every 1,000 
ft).  

All available Yes and No turbulence PIREPs were 
included in the verification analyses. These reports 
include information about the severity of turbulence 
encountered, which was used to categorize the reports. 
In particular, reports of moderate to extreme turbulence 
were included in the “Moderate-or-Greater” (MOG) 
category. In addition to the PIREPs, AVAR data were 
obtained from certain United Airlines aircraft, through 
the Aircraft Communications, Addressing, and Reporting 
System (ACARS). These data are available every 10 
minutes through the FSL Aircraft Data Web. The AVAR 

observations are a measure of the aircraft’s vertical 
acceleration, which can be associated with either 
internal motions of the aircraft, or external forces such 
as turbulence. Due to the effects of aircraft motions on 
the value of the vertical acceleration, the AVAR data 
only can be used as an indicator of no turbulence. Thus, 
only AVAR observations that were within 20% of the 
acceleration of gravity were included as observations of 
No turbulence. 
 
5. METHODS 
 
5.1 Matching methods 
 

For the post-analyses, PIREPs and AVAR 
observations were matched to the largest algorithm 
value (or smallest value in the case of Richardson 
number) among the surrounding eight gridpoints (i.e., 
the four surrounding gridpoints horizontally, over two 
levels vertically). AIRMETs were matched to the 
PIREPs in the same way, by overlaying the RUC-2 grid 
on the AIRMET areas and assigning a Yes forecast to 
all gridpoints located inside an AIRMET. This approach 
is somewhat different from the bi-linear interpolation 
method used by the RTVS, which estimates the 
algorithm values at the location of each PIREP. 
However, consistency between the RTVS and post-
analysis results suggest that the verification results are 
robust to this choice. 

Previous evaluations of time windows for matching 
PIREPs to the forecasts have suggested that ±1 hour is 
an appropriate time length to allow fair 
representativeness of the model valid time and to obtain 
an adequate number of PIREPs (Mahoney 1998). Thus, 
this time window was applied in these analyses, both in 
real time and in post analysis. A time window of  ±1 hour 
around the model valid time also was used to evaluate 
the AIRMETs, so that the AIRMET verification results 
are comparable to the algorithm results. 

 
5.2 Statistical verification methods 
 

Turbulence forecasts and observations are treated 
here as dichotomous (i.e., Yes/No) values. In particular, 
the algorithm forecasts are converted to a variety of 
Yes/No forecasts by application of various thresholds for 
the occurrence of turbulence. Thus, the verification 
statistics generally are based on methods for 
dichotomoous variables. However, some special 
methodological concerns arise due to the use of 
PIREPs as the verification data. For example, it is not 
appropriate to compute verification statistics such as the 
False Alarm Ratio, Bias, and Critical Success Index, 
due to the non-systematic nature of PIREPs (Brown and 
Young 2000). Moreover, other verification statistics 
based on PIREPs should not be interpreted in an 
absolute sense, but can be used in a comparative 
sense, for comparisons between algorithms and 
forecasts.  

Table 3 lists the verification statistics used in this 
evaluation. As shown in this table, PODy and PODn are 
the primary verification statistics based on the 2x2 
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verification table. These statistics should be interpreted 
as the proportions of Yes and No PIREPs that are 
correctly forecast. Together, PODy and PODn measure 
the ability of the forecasts to discriminate between Yes 
and No turbulence observations. This discrimination 
ability is summarized by the True Skill Statistic (TSS), 
which frequently is called the Hanssen-Kuipers 
discrimination statistic (Wilks 1995). Note that it is 
possible to obtain the same value of TSS for a variety of 
combinations of PODy and PODn. Thus, it always is 
important to consider PODy and PODn, as well as TSS. 
PODn is computed in two ways in this study – (i) using 
the negative PIREP observations and (ii) using the 
negative AVAR observations. 

 

Table 3. Verification statistics used in this study. 
Statistic Definition Description 

 
PODy 

Probability of 
Detection of “Yes” 
PIREPs 

Proportion of Yes 
PIREPs that were 
correctly forecasted 

 
PODn 

Probability of 
Detection of “No” 
PIREPs or AVARs 

Proportion of No PIREPs 
or AVARs that were 
correctly forecasted 

True Skill 
Statistic 
(TSS) 

PODy +  
PODn –1 

A measure of 
discrimination 

 
Curve 
Area 

Area under the 
ROC curve relating 
PODy and  
1-PODn 

 
A measure of overall skill 

 
% Volume 

Forecast Volume 
divided by Total 
Volume, x 100 

% of the total airspace 
that is impacted by the 
forecast 

Volume 
Efficiency 

(VE) 

PODy divided by  
% Volume, x 100 

PODy (x 100) per unit  
% Volume 

 
The relationship between PODy and 1-PODn for 

different algorithm thresholds is the basis for the 
verification approach known as “Signal Detection 
Theory” (SDT). This relationship can be represented for 
a given algorithm by the curve joining the (1-PODn, 
PODy) points for different algorithm thresholds. The 
resulting curve is known as the “Receiver Operating 
Characteristics” (ROC) curve in SDT. The area under 
this curve is a measure of overall forecast skill (e.g., 
Mason 1982), another measure that can be compared 
among the algorithms.  

As shown in Table 3, two other statistics are utilized 
for verification of the turbulence forecasts: Impacted 
Volume and Volume Efficiency (VE). Impacted Volume 
measures (in three dimensions) the amount of airspace 
that is forecast to have turbulence, and is computed by 
summing all grid volumes with a Yes forecast. In 
general, Impacted Volume is expressed as % Volume, 
relative to the maximum volume possible. Because the 
analyses are limited to 20,000 ft and above, the total 
possible volume is about 64 million km3. VE represents 
the % PODy per unit % Volume. While this statistic is 
useful for comparing algorithms, it also cannot be used 
alone. In particular, it is easy to obtain a large efficiency 
value when the Impacted Volume is small, even if PODy 
is also very small. An appropriate use of this statistic is 

to compare the efficiencies of forecasting systems with 
nearly equivalent values of PODy (e.g., see Brown et al. 
1999a). 

Emphasis will be placed on PODy, PODn, and % 
Volume. Use of this combination of statistics implies that 
the underlying goal of the algorithm development is to 
include most Yes PIREPs in the forecast “Yes 
turbulence” region, and most No PIREPs in the forecast 
“No turbulence” region (i.e., to increase PODy and 
PODn), while minimizing the extent of the forecast 
region, as represented by % Volume. All of these 
statistics must be used together, because each by itself 
can provide misleading results. Percent Volume and VE 
can be used to compare algorithms with similar PODy 
and PODn values.   
 
5.3 Stratifications 
 

Two categories of reported severity are considered: 
(i) reports of any turbulence severity (light and greater) 
and (ii) reports of MOG severity. The results also are 
stratified by forecast lead time. During the real-time 
portion of the study and in the initial post-analyses, the 
PIREPs also were stratified by aircraft weight  (to make 
the observations more homogeneous) and lightning 
data (to eliminate reports that may be related to 
convective activity). However, these stratifications vastly 
reduced the PIREP dataset, but had little impact on the 
verification results. Thus, these stratifications are not 
considered in the analyses presented here. 
 
6. RESULTS 
 

The verification analyses were limited to dates and 
times when algorithm output and verification data were 
available for all algorithms. As a result, a total of 235 3-
hr forecasts, 161 6-hr forecasts, and 106 9-hr forecasts 
were included. 

Overall results for MOG PIREPs are shown in Fig. 
1 for three groups of algorithms, for all forecasts with a 
lead time of 3 hr. The algorithms are divided into three 
groups to make the diagrams more clear. Group A 
includes ITFA, DTF3, DTF4, and DTF5; Group B 
includes Brown-1, Ellrod-1, and Ellrod-2; and Group C 
includes Dutton, Colson-Panofsky, Endlich, and 
Richardson number. The plots in Fig. 1 were created by 
combining all of the 3-hr forecasts (i.e., for all issue 
times). The figures include plots of PODy (MOG 
PIREPs) versus 1-PODn. Individual points on the 
algorithm curves represent the various thresholds used 
to create Yes/No forecasts. Curves for better forecasts 
are located closer to the upper lefthand corner of the 
diagrams.  

The first impression from Fig. 1 is that, in general, 
the forecasting performance is very similar among the 
algorithms. However, some differences are apparent 
even in these crowded plots. In these figures, results for 
the AIRMETs can be used as a separator for the 
algorithm curves. Curves that approximately cross or lie 
just below the AIRMET point in Fig. 1 include Ellrod-1, 
Ellrod-2, DTF3, ITFA, and Richardson number. 

 



Ninth Conference on Aviation, Range, and Aerospace Meteorology 
11-15 September 2000, Orlando, FL 

 
All of the Group C algorithm curves lie below the 
AIRMET point. 

The 3-hr results can be examined in greater depth 
by selecting appropriate, comparable thresholds for 
each algorithm and comparing the individual statistics 
among the algorithms. One rationale for this process is 
to select thresholds that lead to a PODy value that is 
approximately the same as the value attained by the 
AIRMETs. Table 4 shows the results of this exercise for 

the 3-hr forecasts. This table includes a variety of 
statistics associated with the specified thresholds. 

Two values of PODy are included in Table 4 – one 
for All severities and one for MOG severities. In all 
cases, PODy (MOG) is slightly larger than PODy (All), 
which suggests that the MOG PIREPs are somewhat 
easier to capture than are PIREPs associated with less 
severe conditions. Two values of PODn also are 
included in Table 4 – one based on negative PIREPs, 
and the other based on AVAR data. Surprisingly, these 
two values of PODn are quite similar, even though the 
sources of the data are so different. For some 
algorithms (e.g., Brown-1), the value of PODn for the 
PIREPs is slightly larger, and in other cases (e.g., 
DTF5) the value for the AVARS data is slightly larger. 
However, the differences are always fairly small. The 
PODn values do, however, vary among the algorithms, 
with the largest values achieved by the AIRMETs, 
DTF5, Ellrod-1, ITFA, and Richardson number. Among 
the different forecasts and algorithms, the largest values 
of TSS are achieved by the AIRMETs, DTF3, Ellrod-1, 
Ellrod-2, ITFA, and Richardson number. In terms of VE, 
the best performance is achieved by the AIRMETs, 
Ellrod-1, Ellrod-2, and ITFA. The Richardson number 
has a relatively large % Volume value, and hence, a 
relatively small Volume Efficiency. 

Thus, the results in Table 4 suggest that there are 
some discernible differences in the results among the 
algorithms, with the apparently best, all-around,  
algorithm performance associated with Ellrod-1 and -2, 
ITFA, and DTF3. Confidence intervals were computed 
for some of the statistics showing the largest 
differences, using methods identified by Kane and 
Brown (2000). These intervals indicate that none of the 
comparable statistics are significantly different from 
each other. For example, the 95% confidence intervals 
for the ITFA, Ellrod-1, and DTF3 values of PODn (based 
on PIREPs) in Table 4 are (0.63, 0.71) for ITFA, (0.60, 
0.66) for DTF3, and (0.62, 0.70) for Ellrod-1. Because 
the intervals overlap, the apparent differences are not 
statistically significant. 

Estimates of the area under the curve relating 
PODy (MOG PIREPs) to 1-PODn (i.e., the ROC curves) 
for each algorithm, for all three lead times, are shown in 
Table 5. Note that this statistic is not included for the 
AIRMETs since only one (1-PODn, PODy) point is 
associated with the AIRMETs. The results in Table 5 
indicate that the curve areas are quite similar for all of 
the algorithms, with slightly larger values for DTF3, 
Ellrod-1, Ellrod-2, ITFA, and Richardson number. The 
results in Table 5 also suggest only a very slight 
decrease in skill with increased lead time. Finally, the 
curve area values for the Random Index all are 
approximately equal to 0.50; although not shown in Fig. 
1, the PODy vs. 1-PODn curve for the random forecasts 
lies along the diagonal line in the ROC diagrams. These 
results indicate that the verification software was 
functioning correctly, and that the algorithms do have 
positive skill relative to a random forecast. 

(c) 

(a) 

1 - PODNo

PO
D

y 
(M

O
G

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
BROWN-1
ELLROD-1
ELLROD-2

1 - PODNo

PO
D

y 
(M

O
G

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
DUTTON
COLSON-PANOVSKY
ENDLICH
RICH

(b) 

1 - PODNo

PO
D

y 
(M

O
G

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AIRMETs
ITFA
DTF3
DTF4
DTF5

Figure 1. ROC diagrams relating PODy to 1-PODn,
for three groups of algorithms: (a) Group A; (b)
Group B; and (c) Group C. 
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Table 4. Verification statistics for all 3-hr forecasts (all issue times combined), for thresholds with PODy (MOG 
PIREPs) about the same as the PODy for AIRMETs. Larger values of TSS and VE are in boldface. 

 
Algorithm 

 
Threshold 

PODy 
(All) 

PODy 
(MOG) 

PODn 
(PIREPs) 

PODn  
(AVARs) 

 
TSS 

 
VE 

AIRMETs -- 0.57 0.64 0.70 0.66 0.34 2.8 
Brown-1 9x10-5 0.58 0.62 0.63 0.58 0.25 2.3 

Colson-Panofsky -1000 0.58 0.63 0.61 0.53 0.24 1.9 
DTF3 0.7 0.63 0.68 0.63 0.63 0.31 2.3 
DTF4 2.5 0.63 0.67 0.57 0.60 0.24 2.1 
DTF5 0.15 0.56 0.59 0.66 0.68 0.25 2.5 

Empirical Dutton 25 0.62 0.66 0.57 0.57 0.23 2.2 
Ellrod-1 4x10-7 0.61 0.66 0.66 0.64 0.32 2.9 
Ellrod-2 4x 10-7 0.61 0.66 0.63 0.59 0.29 2.8 
Endlich 0.225 0.63 0.66 0.53 0.55 0.19 2.1 

ITFA 0.13 0.57 0.62 0.67 0.65 0.29 2.6 
Richardson #  4 0.58 0.63 0.66 0.64 0.29 2.4 

 

Table 5. Areas under the ROC curves for all 
algorithms, for three lead times (all issue times 
combined). 

Lead time (hr)  
Algorithm 3 hr 6 hr 9 hr 
Brown-1 0.67 0.67 0.69 

Colson-Panofsky 0.67 0.66 0.66 
DTF3 0.71 0.70 0.70 
DTF4 0.67 0.67 0.66 
DTF5 0.67 0.67 0.67 

Empirical Dutton 0.65 0.65 0.64 
Ellrod-1 0.72 0.71 0.71 
Ellrod-2 0.69 0.69 0.69 
Endlich 0.63 0.62 0.60 

ITFA 0.70 0.69 0.68 
Random 0.50 0.50 0.49 

Richardson number 0.70 0.69 0.68 
 
 
7. CONCLUSIONS AND FUTURE WORK 
 

In general, differences found thus far among the 
performance characteristics of the various algorithms are 
relatively small, except for certain differences that stand 
out.  The Brown-1, Colson-Panofsky, Dutton, and Endlich 
algorithms generally exhibited poorer performance than 
the other algorithms. Algorithms that performed the best 
overall include DTF3, Ellrod-1 and -2, and ITFA. However, 
differences between the PODy and PODn values for 
different algorithms were, in general, not statistically 
significant. These results will provide a baseline for future 
development of turbulence forecasting algorithms. 

It is important to remember that the results presented 
here are based on a single season. A second turbulence 
algorithm intercomparison exercise took place during the 
winter of 2000. The winter 2000 exercise again included a 
real-time component through the RTVS. As part of this 
exercise, the RTVS capabilities were enhanced. For 
example, RTVS now includes time series plots (which can 
be specified by the user) showing results accumulated 
across several days. Fig. 2 shows an example of a time 
series plot from the winter 2000 real-time exercise. These 
types of plots allow a closer look at short-term variations 
in the statistics and will enable identification of situations 
in which one algorithm performs better than another. 

The winter 1998-99 and winter 2000 intercomparison 
analyses will be combined and extended in the near 
future. Additional algorithms will be evaluated, including a 
statistically-based version of ITFA, as well as other basic 
algorithms. PIREPs that were recently obtained from 
Northwest Airlines also will be used to enhance the 
PIREP dataset. Finally, available feature detectors (e.g., 
jet stream, and possibly mountain wave) will be applied to 
the forecasts to determine the effects of these features on 
the verification results.  

This intercomparison exercise not only developed a 
baseline for turbulence algorithm development, but also 
tested the robustness of the verification methods. 
Comparisons of the statistical results generated by the 
RTVS and the post-analysis indicate that the results are 
somewhat sensitive to the method used to match 
turbulence forecasts to the observations.  However, 
despite the methodological and data differences between 
the systems, the basic conclusions are consistent 
between the real-time and post-analysis results. Thus, the 
combination of real-time and post-analysis provides a 
robust evaluation of the quality of the turbulence 
forecasts. 

 

 

Figure 2. Time series of weekly values of PODy 
(triangles) and PODn (+’s), for Ellrod-2 index with a 
threshold of 4x10-7, for the period 10 January to 15 
April 2000, provided by the RTVS (http://www-
ad.fsl.noaa.gov/afra/rtvs/RTVS-project_des.html). 
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