NOAA’s National Air Quality Forecast Capability:
Targets and Needs

NOAA Chemical Modelling Workshop
October 10, 2007

Paula Davidson
NOAA’s National Air Quality Forecast Capability: Targets and Needs

• Background on NOAA’s AQ Forecast Capability

• Operational Perspectives
 – Links to Operational AQF capabilities
 – Links to NUOPC

• Recommendations
National Air Quality Forecast Capability

Current and Planned Capabilities

Near-term: 1-day forecast guidance for ozone and smoke
- Operational for Contiguous US (CONUS) as of September, 2007
- Nationwide by FY10

Intermediate (5-7 years):
- Implement quantitative capability to forecast particulate matter concentration
 - Particulate size ≤ 2.5 microns

Longer range (within 10 years):
- Extend air quality forecast range to 48-72 hours
- Include broader range of significant pollutants
National Air Quality Forecast Capability
End-to-End Operational Capability

Model Components: Linked numerical prediction system

- Operationally integrated on NCEP’s supercomputer
 - NCEP mesoscale NWP: WRF-NMM
 - NOAA/EPA community model for AQ: CMAQ

Observational Input:
- NWS weather observations; NESDIS fire locations
- EPA emissions inventory

Gridded forecast guidance products

- On NWS Telecommunications Gateway and EPA servers
- Updated 2x daily

Verification basis

- EPA compilation:
 - Ground-level ozone observations

Customer outreach/feedback

- State & Local AQ forecasters coordinated with EPA
- Public and Private Sector AQ constituents
Operational AQ forecast guidance

www.weather.gov/aq

CONUS Ozone Expansion Implemented September, 2007

Smoke Products Implemented March, 2007

Further information: www.nws.noaa.gov/ost/air_quality
Transition to Operations: Phased Development, Testing, Implementation

Phased Testing

Research
- Does the science work?

Developmental Testing
- Does it work with operational systems?

Experimental Testing
- Does it meet deployment readiness criteria?

Deploy into Operations

Key S&T Tests
- O_3 -- Summer 2007

More advanced PBL mixing in CMAQ (CB05)

PBL mixing (ACM2) in CMAQ, CA off-road emissions, dry deposition upgrades

NAM and emissions data updates; Plume rise correction

"Does the science work?"

"Does it work with operational systems?"

"Does it meet deployment readiness criteria?"
Operational Readiness Criteria Summary: Example, Expanded Ozone Predictions

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Lead</th>
<th>Metric</th>
<th>Dates</th>
<th>Status</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Evaluation: Accuracy</td>
<td>NCEP</td>
<td>> 90%</td>
<td>5/4/07 – 8/31/07</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Subjective Feedback</td>
<td>OCWWS</td>
<td>Positive on balance</td>
<td>5/4/07 – 8/31/07</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Production Readiness</td>
<td>OCIO, NCEP</td>
<td></td>
<td></td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>On-time delivery</td>
<td></td>
<td>> 95 %</td>
<td>5/4/07 – 8/31/07</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Back-up</td>
<td></td>
<td>In place</td>
<td>6/1/06</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Data retention</td>
<td></td>
<td>In place</td>
<td>6/1/06</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Near-real time verification*</td>
<td>NCEP</td>
<td>In place</td>
<td>6/1/06</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Final go/no go decision</td>
<td>NWS</td>
<td></td>
<td>9/10/07</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

* NESDIS automated (objective) product

Key
- Complete
- On schedule
- At risk
- Remedial Action Required
Purpose:
• Provide predictions of poor AQ with enough accuracy and lead time for people to take actions to limit adverse effects of poor AQ

Statement of Need, State/Local Air Quality Forecasters:
• Operational predictions of ground-level concentrations of ozone, PM and other pollutants of concern
• Hourly information, on 5-km grid resolution, updated twice each day

Objectives:
• National Forecast Capability for ozone (O_3), particulate matter ($PM_{2.5}$), and other pollutants of concern
• Target Full Operational Capability: O_3, FY 10; $PM_{2.5}$, FY15

Current Capabilities, October 2007
• Operational capabilities: Ozone and Smoke Predictions for CONUS
• Experimental capabilities (FY08): Ozone, smoke upgrades
• In development: Components for quantitative PM2.5 prediction
Operational Air Quality Forecasting:

Development of PM Forecast Capability

CTM for regional AQF

Progress with ozone

- Mature technology; Gas-phase chemistry relatively well understood
- Pollutant emissions inventory successful for capturing daily chemical inputs important for O3 prediction

PM: More challenging

- More complicated chemistry (approx 10X more species involved)
- Real-time source inputs (e.g. dust, fire) are significant additions to inventory-based emissions
- Longer atmospheric lifetimes of both primary and produced particles
- Reliable prototype model for PM and ozone not yet available
- AQ Program outlined a decision process for developing prototype model for combined PM and O3: CTM for regional AQF
Operational Air Quality Forecasting: Key Technical Risks and Mitigation

Technical risks/mitigation for implementing full operational capabilities:

<table>
<thead>
<tr>
<th>Technical Risk</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inaccurate estimates of chemical boundary conditions for US, based on climatology</td>
<td>Real-time, speciated chemical information from global-scale models</td>
</tr>
<tr>
<td>Inaccurate predictions of chemical species: ozone</td>
<td>Ongoing updates to pollutant emissions inventories from EPA on; continued monitoring of O3 prediction accuracy/verification</td>
</tr>
<tr>
<td>Inaccurate predictions of chemical species: PM2.5</td>
<td>For candidate models: monitoring of PM test-prediction accuracy/verification; continued development of missing or deficient components (dust, smoke, SOA, nitrates, sulfates,...)</td>
</tr>
<tr>
<td>Inaccurate predictions of driving boundary-layer meteorological conditions</td>
<td>Closer coupling between weather and AQ modules; improvements ongoing in accuracy, resolution of NCEP's NAM</td>
</tr>
<tr>
<td>Run-time exceeds 2.5-hour prediction window and processor capacity</td>
<td>NOW: Adaptations/optimizations to CTMs for NCEP operational supercomputing environment</td>
</tr>
<tr>
<td></td>
<td>FUTURE: Closer coupling of meteorological and CTM modules; additional supercomputing processors for AQF</td>
</tr>
</tbody>
</table>

Mitigation involves:
- Incorporation of improved CTM in global scale models
- Improved, more comprehensive CTM for regional AQF
Air Quality Forecasting
AQ Model Decision Framework

Purpose
• Process for NOAA’s AQ Program to select, from available approaches and components, those best suited for an operational quantitative forecast model for particulate matter (PM$_{2.5}$)

Model Requirements
• Timing: NOAA’s AQ Team, to recommend to NWS a prototype AQ model in FY09 that is suitable to transition to operations by FY11.
• Prediction accuracy: must predict ozone with sufficient accuracy to meet existing performance measures and must also predict speciated PM2.5.
• Ownership: NOAA must have rights to review and modify source code for models and related processing programs.
• PM model run-time: PM predictions, including associated interface processors must run at NCEP in a 2.5-hour window on the supercomputer processors available for air quality operations.
Criteria for Evaluating Model Configuration Options

Forecast/Analysis
- Which approach provides the best forecast guidance for ozone and PM2.5?

Sustainability
- Which approach best represents the current scientific understanding?
- Which approach provides the most flexibility for future improvements and extensions?

Compatibility
- What are the computational requirements of each approach?
- How easy will the choice be to implement/integrate?

Efficiency
- Which approach affords the best efficiency for software and model system maintenance, and integration with both regional and global applications?
Decision Process

- Sequential, focusing earlier on the decisions that constrain successive choices.
- Decisions may be deferred if available information is inadequate, but efforts to resolve key uncertainties should be initiated.
- If prior decisions have led to an undesirable result, decisions may be revisited.
- NWS and OAR will work closely together to make decisions, in NOAA’s AQ Matrix Program.
 - The line office with final authority for making decisions will depend on the phase of the project:
 - Specifying operational constraints for the system--Lead: NWS
 - Research that produces the prototype modeling system--Lead: OAR
 - Recommendation to NWS for prototype for initial operational capability (FY09Q3)--Lead: OAR
 - Transition of the prototype to operations--Lead: NWS
 - Operations--Lead: NWS
 - During the research phase the following process will be used:
 - A technical team of OAR and NWS personnel selected by the management team will consider issues and make recommendations; may also include recommending new research activities to provide information required to reach a decision.
 - An OAR-led management team with members from both OAR and NWS will make decisions.
 - Periodically a peer panel composed of independent experts will conduct a scientific peer review of the research activities.
Operational Perspectives:
NOAA’s Atmospheric Chemistry Models
Linkage to NUOPC

National Unified Operational Prediction Capability, the next-generation global weather forecast system, being planned:

- Tri-agency effort: NOAA, Navy, AirForce
- Framework to couple modules for data assimilation, dynamics, physics
- Aerosol module important for data assimilation; also dynamics, physics of NWP

NOAA’s AQ Forecast capability requires chemical boundary conditions (BC):

- NUOPC could provide the required speciated chemistry for BC—especially critical for PM
NUOPC Vision: A National Global Modeling System (Slide courtesy F. Toepfer)
NUOPC Vision II: A National Global Modeling System

NUOPC Component System

Application Driver

ESMF Superstructure
(component definitions, communications, etc)

Dynamics
(1,2)

Physics
(1,2,3)

Multi-component ensemble

Stochastic forcing

ESMF Utilities
(clock, error handling, etc)

Coupler

Post processor & Product Generator
Verification
Resolution change

Chemical Transport Model (CTM)

AQ Forecast Model (CTM)

Analysis
Other Forecast Systems
Operational Perspectives:
NOAA’s Atmospheric Chemistry Models
Linkage to NUOPC

NUOPC

• CTM within NUOPC framework can provide source inputs, reactive transport, deposition for aerosols
• Tradeoffs between detailed, complex chemistry and large-scale total-aerosol impacts

NAQFC:

• Consistent CTM approach in global and regional scales minimizes model-induced uncertainty for operational AQ forecasts.
• Possibility for streamlining a comprehensive CTM used in higher-scale regional AQF.

Recommendation: Next-generation global weather model (NUOPC) incorporates operational AQF CTM, streamlined as necessary
NOAA’s Atmospheric Chemistry Models:
Research and Operational Capabilities

- Many of the models were developed for specific research questions and/or applications
- Some are also used directly for operations or to improve NOAA operations
- Links to operational capabilities speeds transition of Research to Operations:
 - *Effectiveness for NOAA operations enhanced*
 - when user base includes both research and operations—e.g. CMAQ
 - when CTM includes NOAA operational input sources — operational observational input streams, data assimilation, weather models.
 - *Effectiveness for NOAA research enhanced*
 - wider application, user bases increase rate of improvements

Recommend: OAR and NWS work to increase linkage between research chemistry models and operational models
Operational Needs for AQF:

NOAA’s Atmospheric Chemistry Models

Global Aerosol Inputs:
- Real-time information on aerosol-forming emissions and processes that contribute to inputs to airborne PM in the US
 - Combines global real-time and episodic contributions, on species contributing to primary and secondary PM with available inventory and other data for the US

Regional Chemical Transport Modules:
- Reliable, short-term prediction of ground-level PM and ozone
 - Hourly concentrations accurately predict thresholds used by AQ forecasters in issuing alerts
 - Onset, severity, duration of poor AQ episodes: forecasts accurately predict max values for day 2 and beyond
- Simulate processes for production, reactive transport, deposition on scale of mesoscale weather models (currently 12km; approaching 4 km in future)
- Incorporate chemical boundary conditions (BC) from global chemistry model

Coupled to Operational NWP:
- Appropriate feedback between chemical and weather models
- Degree of coupling may be limited by timing (cannot add more than ~2 hrs to “off-line” meteorological forecast model production
- Appropriate precision for reactive transport processes
- Options for probabilistic information/ensembles

Effective, efficient use of operational supercomputing resources
- Modules for data assimilation and reactive chemical transport adaptable for use in both global and regional scales
- Interoperability of developmental modules with experimental and operational systems for accelerated transition of new S&T to operations
Recommendations

• OAR/NESDIS and NWS work to increase linkage between research chemistry models and operational models

• Next-generation global weather model (NUOPC) integrates regional operational AQF CTM, streamlined as necessary
Acknowledgments:

AQF Implementation Team

OCWWS Mike Dion Outreach, Feedback
 Cindy Cromwell, Allan Darling, Bob Bunge Data Communications

OCIO Jerry Gorline Dev. Verification

OST/MDL Marc Saccucci, Tim Boyer, Dave Ruth NDGD Product Development
 Ken Carey Program Support

OST Cindy Cromwell, Allan Darling, Bob Bunge Product Archiving

NESDIS/NCDC Alan Hall NOAA AQ Matrix Manager

NCEP Jim Meagher Smoke Product testing and integration

Jeff McQueen System design and implementation
Pius Lee Regional testing
Marina Tsidulko Global dust/smoke system DT&E
Youhua Tang Global data assimilation and feedback testing (NASA, NESDIS)
Ho-Chun Huang WRF retrospective run
*Sarah Lu NAM products
*Brad Ferrier, *Dan Johnson Smoke Verification product development
*Eric Rogers, *Hui-Ya Chuang NCO transition and systems testing
Geoff Manikin * Guest Contributors

NOAA/OAR Rohit Mathur ASMD AQF team leader
 Daiwen Kang CMAQ verification, PM testing
 Shaocai Yu CMAQ diagnostic studies
 Hsin-Mu Lin, Tanya Otte PREMAQ development
 Jon Pleim CMAQ met processing development
 Jeff Young, David Wong Code optimization
 George Pouliot, Daniel Tong Emissions processingOA
 Ken Schere ASMD Science oversight
 Roland Draxler, Glenn Rolph HMS product integration with smoke forecast tool

NOAA/NESSDIS Shobha Kondragunta, Jian Zeng Smoke Verification product development
 George Stephens, Mark Ruminski HYSPLIT adaptations
National Air Quality Forecast Capability: Current NWS Operational Links: Ozone

NCEP Numerical Weather Prediction
- Real-time Weather Obs: Monitoring, Rem Sensed
- Boundary Conditions From Global Weather Model
- Mesoscale Weather Model
- Weather Data Assimilation
- Atm Chemical Data Assimilation: 3-D or 4-D
- QC/QA
- Real-time Chem Observations: In-Situ Monitoring, Rem Sensed
- R-T Boundary Conditions, Trans-boundary transport Especially: Dust, Fires

Numerical Chemistry Prediction
- Emissions Preprocessing
- Pollutant Emissions Inventory
- Chem Transport Model: PM + Ozone
- Chem Transport Model: Ozone

Product Generation
- Verification

Forecast for public dissemination
- Customer Feedback

Current NAQFC Elements
- Planned FY08-FY13
- Increased obs inputs: Resource-dependent

Continuous SCIENCE/TECH Infusion
- Research, Development, Testing, Integration