Q3: Why do we care about atmospheric ozone?

Ozone in the stratosphere absorbs some of the Sun's biologically harmful ultraviolet radiation. Because of this beneficial role, stratospheric ozone is considered "good" ozone. In contrast, excess ozone at Earth's surface that is formed from pollutants is considered "bad" ozone because it can be harmful to humans, plants, and animals. The ozone that occurs naturally near the surface and in the lower atmosphere is also beneficial because ozone helps remove pollutants from the atmosphere.

Natural ozone. In the absence of human activities on Earth's surface, ozone would still be present near the surface and throughout the troposphere and stratosphere because ozone is a natural component of the clean atmosphere. All ozone molecules are chemically identical, with each containing three oxygen atoms. However, ozone in the stratosphere (good ozone) has very different environmental consequences for humans and other life forms than excess ozone in the troposphere near Earth's surface (bad ozone). Natural ozone in the troposphere is also considered "good" because it initiates the chemical removal of many pollutants, such as carbon monoxide and nitrogen oxides, as well as greenhouse gases such as methane.

Good ozone. Stratospheric ozone is considered good for humans and other life forms because it absorbs ultraviolet (UV)-B radiation from the Sun (see Figure Q3-1). If not absorbed, UV-B would reach Earth's surface in amounts that are harmful to a variety of life forms. In humans, increased exposure to UV-B increases the risk of skin cancer (see Q17), cataracts, and a suppressed immune system. UV-B exposure before adulthood and cumulative exposure are both important factors in the risk. Excessive UV-B exposure also can damage terrestrial plant life, single-cell organisms, and aquatic ecosystems. Other UV radiation, UV-A, which is not absorbed significantly by ozone, causes premature aging of the skin.

The absorption of UV-B radiation by ozone is a source of heat in the stratosphere. This helps to maintain the stratosphere as a stable region of the atmosphere, with temperatures increasing with altitude. As a result, ozone plays a key role in controlling the temperature structure of Earth's atmosphere.

Protecting good ozone. In the mid-1970s, it was discovered that halogen source gases released in human activities could cause stratospheric ozone depletion (see Q6). Ozone depletion increases harmful UV-B amounts at Earth's surface. Global efforts have been undertaken to protect the ozone layer through regulation of ozone-depleting gases (see Q15 and Q16).

Bad ozone. Excess ozone formed near Earth's surface in reactions caused by the presence of human-made pollutant gases is considered bad ozone. Increased ozone amounts are harmful to humans, plants, and other living systems because ozone reacts strongly to destroy or alter many other molecules. Excessive ozone exposure reduces crop yields and forest growth. In humans, exposure to

high levels of ozone can reduce lung capacity; cause chest pains, throat irritation, and coughing; and worsen preexisting health conditions related to the heart and lungs. In addition, increases in tropospheric ozone lead to a warming of Earth's surface (see Q18). The negative effects of increasing tropospheric ozone contrast sharply with the positive effects of stratospheric ozone as an absorber of harmful UV-B radiation from the Sun.

Reducing bad ozone. Reducing the emission of pollutants can reduce bad ozone in the air surrounding humans, plants, and animals. Major sources of pollutants include large cities where fossil fuel consumption and industrial activities are greatest. Many programs around the globe have already been successful in reducing the emission of pollutants that cause excess ozone production near Earth's surface.

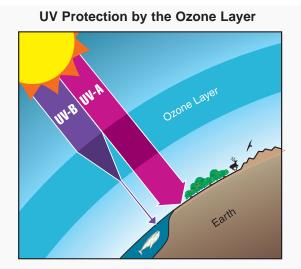


Figure Q3-1. UV-B protection by the ozone layer.

The ozone layer resides in the stratosphere and surrounds the entire Earth. UV-B radiation (280- to 315-nanometer (nm) wavelength) from the Sun is partially absorbed in this layer. As a result, the amount of UV-B reaching Earth's surface is greatly reduced. UV-A (315-to 400-nm wavelength) and other solar radiation are not strongly absorbed by the ozone layer. Human exposure to UV-B increases the risk of skin cancer, cataracts, and a suppressed immune system. UV-B exposure can also damage terrestrial plant life, single-cell organisms, and aquatic ecosystems.