APPENDICES

1

- A List Of International Contributors and Reviewers
- **B** List of Figures
- **C** List of Tables
- **D** Major Acronyms and Abbreviations
- E Chemical Formulae and Nomenclature

/ .

APPENDIX A

LIST OF INTERNATIONAL CONTRIBUTORS AND REVIEWERS

CO-CHAIRS

Daniel L. AlbrittonNational Oceanic and Atmospheric Administration, Boulder, COUSRobert T. WatsonNational Aeronautics and Space Administration, Washington, DCUS

OZONE PEER-REVIEW MEETING Les Diablerets, Switzerland October 14-18, 1991

Daniel L. Albritton	NOAA Aeronomy Laboratory	US
Roger Atkinson	Statewide Air Pollution Research Center	US
Lane Bishop	Allied Signal Inc.	US
Rumen D. Bojkov	World Meteorological Organization	Switzerland
William H. Brune	Pennsylvania State University	US
Bruce Callander	Meteorological Office, IPCC Secretariat	UK
Daniel Cariolle	Meteorologie Nationale EERM/CNRM	France
Marie-Lise Chanin	Service d'Aèronomie du CNRS	France
R. Anthony Cox	Natural Environment Research Council	UK
Vitali Fioletov	Central Aerological Observatory	USSR
Paul J. Fraser	CSIRO	Australia
Sophie Godin	Service d'Aèronomie du CNRS	France
Robert S. Harwood	University of Edinburgh	UK
Abdel Moneim Ibrahim	Egyptian Meteorological Authority	Egypt
Ivar S. A. Isaksen	University of Oslo	Norway
Charles H. Jackman	NASA Goddard Space Flight Center	UŚ
Evgeny A. Jadin	Central Aerological Observatory	USSR
Colin Johnson	Harwell Laboratory	UK
Igor L. Karol	Main Geophysical Observatory	USSR
Jack Kaye	NASA Headquarters	US
James B. Kerr	Atmospheric Environment Service	Canada
Dieter Kley	Kernforschungsanlage Jülich GmbH	Germany
Malcolm K. W. Ko	Atmospheric & Environmental Research, Inc.	US
Michael J. Kurylo	NASA Headquarters/NIST	US
Jane Leggett	Environmental Protection Agency	US

Conway B. Leovy	University of Washington	US
Pak Sum Low	Ozone Secretariat, UNEP Headquarters	Kenya
Yoshihiro Makide	University of Tokyo	Japan
W. Andrew Matthews	DSIR Physical Sciences	New Zealand
Mack McFarland	E.I. DuPont de Nemours and Co., Inc.	US
Richard L. McKenzie	DSIR Physical Sciences	New Zealand
Gèrard Mègie	Service d'Aèronomie du CNRS	France
P. Muthusubramanian	Madurari Kamaraj University	India
Michael Oppenheimer	Environmental Defense Fund	US
D. C. Parashar	National Physical Laboratory	India
Stuart A. Penkett	University of East Anglia	UK
Lamont R. Poole	NASA Langley Research Center	US
Michael J. Prather	NASA Goddard Institute for Space Studies	s US
Margarita Prendez	Universidad de Chile	Chile
Lian Xiong Qiu	Academica Sinica, Beijing	Peoples Republic of China
V. Ramaswamy	Princeton University	US
A. R. Ravishankara	NOAA Aeronomy Laboratory	US
Joan Rosenfield	NASA Goddard Space Flight Center	US
Nelson Antonio Sabogal	Instituto Colombiano de Hidrologià	Colombia
Eugenio Sanhueza	Instituto Venezolano de Investigaciones C	ientificas Venezuela
Howard Sidebottom	University College Dublin	Ireland
Susan Solomon	NOAA Aeronomy Laboratory	US
Johannes Staehelin	Atmosphärenphysik ETH	Switzerland
Richard S. Stolarski	NASA Goddard Space Flight Center	US
Bhoganahalli Subbaraya	Physical Research Laboratory	India
Guido Visconti	Università degli Studi-l'Aquila	Italy
Andreas Wahner	KFA Jülich	Germany
Wei-Chyung Wang	State University of New York at Albany	US
David A. Warrilow	Department of the Environment	UK
Robert T. Watson	NASA Headquarters	US
Tom Wigley	University of East Anglia	UK
Donald J. Wuebbles	Lawrence Livermore National Laboratory	US
Ahmad Zand	University of Teheran	Iran
Rudi J. Zander	University of Liege	Belgium
Joseph M. Zawodny	NASA Langley Research Center	US
Christos Zerefos	Aristotelian University of Thessaloniki	Greece
Ya-Hui Zhuang	Asian Institute of Technology	Thailand
Sergei Zvenigorodsky	USSR Academy of Sciences	USSR

	Chapter Coordinator	
Paul Fraser	ĊSIRO	Australia
	Lead Authors	
Robert Harriss	University of New Hampshire	US
Yoshihiro Makide	University of Tokyo	Japan
Stuart Penkett	University of East Anglia	ŬK
Eugenio Sanhueza	Instituto Venezolano de Investigaciones Científicas	Venezuela
	Contributors	
Fred N. Alyea	Georgia Institute of Technology	US
Don Blake	University of California, Irvine	· US
Derek M. Cunnold	Georgia Institute of Technology	US
James W. Elkins	NOAA/CMDL	US
Michio Hirota	Japan Meteorological Agency	Japan
Ronald G. Prinn	Massachusetts Institute of Technology	US
Rei A. Rasmussen	Oregon Graduate Institute for Science & Technology	US
F. Sherwood Rowland	University of California, Irvine	US
Toru Sasaki	Meteorological Research Institute	Japan
H. Scheel	Fraünhofer Institute for Atmos. Env. Research	Germany
Wolfgang Seiller	Fraünhofer Institute for Atmos. Env. Research	Germany
P. Simmonds	University of Bristol	UK
Paul Steele	CSIRO	Australia
Ray F. Weiss	Scripps Institution of Oceanography	US
	Mail Reviewers	
R. Anthony Cox	Natural Environment Research Council	UK
Jack Kaye	NASA	US
Volker Kirchhoff	Atmospheric and Space Science, INPE	Brazil
Henning Rodhe	University of Stockholm	Sweden

Chapter 1 Source Gases: Concentrations, Emissions, and Trends

Chapter 2 Ozone and Temperature Trends

	Chapter Coordinator	
Richard S. Stolarski	NASA Goddard Space Flight Center	US
	Lead Authors	•••
Lane Bishop	Allied Signal Inc.	US
Rumen D. Bojkov	World Meteorological Organization	Switzerland
Marie-Lise Chanin	Service d'Aèronomie du CNRS	France
Vitali Fioletov	Central Aerological Observatory	USSR
Sophie Godin	Service d'Aèronomie du CNRS	France
Volker Kirchhoff	Atmospheric and Space Science, INPE	Brazil
Joseph M. Zawodny	NASA Langley Research Center	US
Christos Zerefos	Aristotelian University of Thessaloniki	Greece

	Contributors	
William Chu	NASA Langley Research Center	US
John DeLuisi	NOAA/CMDL	US
Anne Hansson	Atmospheric Environment Service	Canada
James Kerr	Atmospheric Environment Service	Canada
Evgeny Lysenko	Central Aerological Observatory	USSR
M. Patrick McCormick	NASA Langley Research Center	US
Paul Newman	NASA Goddard Space Flight Center	US
Margarita Prendez	Universidad de Chile	Chile
Johannes Staehelin	Atmosphärenphysik ETH	Switzerland
Bhoganahalli Subbaraya	Physical Research Laboratory	India
	Mail Reviewers	
Neil Harris	Department of the Environment	UK
William Hill	University of Wisconsin-Madison	US
A. J. Miller	NOAA National Meteorological Center	US

Chapter 3 Heterogeneous Processes: Laboratory, Field, and Modeling Studies

	Chapter Coordinator	
Lamont R. Poole	NASA Langley Research Center	US
	Lead Authors	
Rod L. Jones	University of Cambridge	UK
Michael J. Kurylo	National Institute of Standards and Technology	US
Andreas Wahner	KFA Jülich	Germany
	Contributors	
Jack G. Calvert	National Center for Atmospheric Research	US
A. Fried	National Center for Atmospheric Research	US
David J. Hofmann	NOAA/CMDL	US
Leon F. Keyser	Jet Propulsion Laboratory	US
Charles E. Kolb	Aerodyne Research	US
MT. Leu	Jet Propulsion Laboratory	US
Mario J. Molina	Massachusetts Institute of Technology	US
M. C. Pitts	Hughes STX	US
A. R. Ravishankara	NOAA Aeronomy Laboratory	US
L. W. Thomason	NASA Langley Research Center	US
Margaret A. Tolbert	SRI, International	US
Doug R. Worsnop	Aerodyne Research, Inc.	' US
• -	Mail Reviewers	
Robert F. Hampson	National Institute of Standards and Technology	US
O. Brian Toon	NASA Ames ResearchCenter	US
Steve Wofsy	Harvard University	US

	Chapter Coordinator	
William H. Brune	Pennsylvania State University	US
	Lead Authors	
Guy Brasseur	National Center for Atmospheric Research	US US
R. Anthony Cox	Natural Environment Research Council	UK
Anne Douglass	NASA Goddard Space Flight Center	US
W. Andrew Matthews	DSIR Physical Sciences	New Zealand
Alan O'Neill	Robert Hooke Institute	UK
Margarita Prendez	Universidad de Chile	Chile
Jose M. Rodriguez	Atmospheric & Environmental Research, J	Inc. US
Bhoganahalli Subbaraya	Physical Research Laboratory	India
Richard Turco	University of California, Los Angeles	US
Rudi J. Zander	University of Liege	Belgium
Xiuji Zhou	State Meteorological Administration	Peoples Republic of China
	Contributors	
J. Austin	Meteorological Office	UK
Malcolm K. W. Ko	Atmospheric & Environmental Research, I	nc. US
Michael J. Prather	NASA Goddard Institute for Space Studies	S US
A. R. Ravishankara	NOAA Aeronomy Laboratory	US
Mark R. Schoeberl	NASA Goddard Space Flight Center	US
Susan Solomon	NOAA Aeronomy Laboratory	US
Adrian F. Tuck	NOAA Aeronomy Laboratory	US
	Mail Reviewers	
Daniel Cariolle	Meteorologie Nationale EERM/CNRM	France
Mack McFarland	E.I. DuPont de Nemours and Co., Inc.	US
John A. Pyle	University of Cambridge	UK
Christos Zerefos	Aristotelian University of Thessaloniki	Greece

Chapter 4 Stratospheric Processes: Observations and Interpretation

Chapter 5 Tropospheric Processes: Observations and Interpretation

	Chapter Coordinator	
Ivar S. A. Isaksen	University of Oslo	Norway
	Lead Authors	
Roger Atkinson	Statewide Air Pollution Research Center	US
J. A. Fuglestvedt	University of Oslo	Norway
Colin Johnson	Harwell Laboratory	UK
Yuan-Pern Lee	National Tsing Hua University, Taiwan	Republic of China
Jos. Lelieveld	Max-Planck Institute for Chemistry-Mainz	Germany
Howard Sidebottom	University of Dublin	Ireland
Anne Thompson	NASA Goddard Space Flight Center	US

	Contributors	
T. Berntsen	University of Oslo	Norway
William H. Brune	Pennsylvania State University	US
Jack Kaye	NASA Headquarters	US
Michael Oppenheimer	Environmental Defense Fund	US
	Mail Reviewers	
Paul J. Crutzen	Max-Planck Institute for Chemistry-Mainz	Germany
Volker Kirchhoff	Atmospheric and Space Science - INPE	Brazil
Stuart Penkett	University of East Anglia	UK

Chapter 6 Ozone Depletion and Chlorine Loading Potentials

	Chapter Coordinator	
Susan Solomon	NOAA Aeronomy Laboratory	US
	Lead Authors	
John A. Pyle	University of Cambridge	UK
Donald J. Wuebbles	Lawrence Livermore National Laboratory	US
Sergei Zvenigorodsky	USSR Academy of Sciences	USSR
	Contributors	
Peter Connell	Lawrence Livermore National Laboratory	US
Donald A. Fisher	E.I. DuPont de Nemours and Co., Inc.	US
Malcolm K. W. Ko	Atmospheric & Environmental Research, Inc.	US
Frode Stordal	Norwegian Institute for Air Research	Norway
Debra Weisenstein	Atmospheric & Environmental Research, Inc.	US
	Mail Reviewers	
Guy Brasseur	National Center for Atmospheric Research	US
Michael J. Prather	NASA Goddard Institute for Space Studies	US

Chapter 7 Radiative Forcing of Climate

	Chapter Coordinator	
V. Ramaswamy	Princeton University	US
	Lead Authors	
Conway Leovy	University of Washington	US
Henning Rodhe	University of Stockholm	Sweden
Keith Shine	University of Reading	UK
Wei-Chyung Wang	State University of New York at Albany	US
Donald J. Wuebbles	Lawrence Livermore National Laboratory	US
	Contributors	
M. Ding	State University of New York at Albany	US
Jae A. Edmonds	Department of Energy	US

Paul Fraser	CSIRO	Australia
Keith Grant	Lawrence Livermore National Laboratory	US
Colin Johnson	Harwell Laboratory	UK
D. Lashof	National Resources Defense Council	US
Jane Leggett	Environmental Protection Agency	US
Jos. Lelieveld	Max-Planck Institute for Chemistry-Mainz	Germany
M. Patrick McCormick	NASA Langley Research Center	US
Abraham Oort	NOAA Geophysical Fluid Dynamics Laboratory	US
M. D. Schwartzkopf	NOAA Geophysical Fluid Dynamics Laboratory	US
A. Sutera	University of Camerino	Italy
David A. Warrilow	Department of the Environment	
Tom Wigley	Meteorological Office	UK
	Mail Reviewers	
Jeffrey Kiehl	National Center for Atmospheric Research	US
Joan Rosenfield	NASA Goddard Space Flight Center	US

Chapter 8 Future Chlorine- Bromine-Loading and Ozone Depletion

	Chapter Coordinator	
Michael J. Prather	NASA Goddard Institute for Space Studies	US
	Lead Authors	
Abdel Moneim Ibrahim	Egyptian Meteorological Authority	Egypt
Toru Sasaki	Meteorological Research Institute	Japan
Frode Stordal	Norwegian Institute for Air Research	Norway
Guido Visconti	Università degli Studi-lAquila	Italy
	Model Contributors	
Guy Brasseur	National Center for Atmospheric Research	US
Christoph H. Brühl	Max-Planck Institute für Chemie	Germany
Donald A. Fisher	E.I. DuPont de Nemours and Co., Inc.	UŠ
Ivar S. A. Isaksen	University of Oslo	Norway
Charles H. Jackman	NASA Goddard Space Flight Center	US
Evgeny A. Jadin	Central Aerological Observatory	USSR
Malcolm K. W. Ko	Atmospheric & Environmental Research, Inc.	US
Toru Sasaki	Meteorological Research Institute	Japan
Susan Solomon	NOAA Aeronomy Laboratory	US
Guido Visconti	Università degli Studi-lAquila	Italy
Donald J. Wuebbles	Lawrence Livermore National Laboratory	US
Sergei Zvenigorodsky	USSR Academy of Sciences	USSR
	Mail Reviewers	
Daniel Cariolle	Meteorologie Nationale EERM/CNRM	France
Paul Fraser	CSIRO	Australia
Charles H. Jackman	NASA Goddard Space Flight Center	US

 $\mathbf{v}^{\mathbf{i}}$

Mack McFarland	E.I. DuPont de Nemours and Co., Inc.	US
Susan Solomon	NOAA Aeronomy Laboratory	US

Chapter 9 Predicted Aircraft Effects on Stratospheric Ozone

	Chapter Coordinator	
Malcolm K. W. Ko	Atmospheric & Environmental Research, Inc.	US
	Lead Authors	
Evgeny A. Jadin	Central Aerological Observatory	USSR
Dieter Kley	Kernforschungsanlage Jülich GmbH	Germany
Steve Wofsy	Harvard University	US
	Contributors	
Colin Johnson	Harwell Laboratory	UK
Michael J. Prather	NASA Institute for Space Studies	US
D. Weisenstein	Atmospheric & Environmental Research, Inc.	US
Donald J. Wuebbles	Lawrence Livermore National Laboratory	US
	Mail Reviewers	
W. Andrew Matthews	DSIR Physical Sciences	New Zealand
K. Stamnes	University of Alaska	US
Froide Stordal	Norwegian Institute for Air Research	Norway

Chapter 10 Predicted Rocket and Shuttle Effects on Stratospheric Ozone

	Chapter Coordinator	
Charles H. Jackman	NASA Goddard Space Flight Center	US
	Lead Authors	
Robert S. Harwood	University of Edinburgh	UK
Igor L. Karol	Main Geophysical Laboratory	USSR
Lian Xiong Qiu	Academia Sinica	Peoples Republic of China
	Contributors	
Michael J. Prather	NASA Goddard Institute for Space Studies	s US
John A. Pyle	Cambridge University	UK
	Mail Reviewers	
Ivar S.A. Isaksen	Univeristy of Oslo	Norway
Harold S. Johnston	Univeristy of California, Berkeley	US
Michael Oppenheimer	Environmental Defense Fund	US
Donald J. Wuebbles	Lawrence Livermore National Laboratory	US

• • ·

Chapter 11 Ultraviolet Radiation Changes

Chapter Coordinator		
Richard L. McKenzie	DSIR Physical Sciences	New Zealand
	Lead Authors	
V. Filyushkin	Central Aerological Observatory	USSR
John E. Frederick	University of Illinois-Chicago	US
Mohammad Ilyas	University of Science of Malaysia	Malavsia
	Contributors	
M. Blumthaler	University of Innsbruck	Austria
Sasha Madronich	National Center for Atmospheric Research	US
P. Muthusubramanian	Madurai Kamaraj University	India
Colin E. Roy	Australian Radiation Laboratory	Australia
K. Stamnes	University of Alaska	US
Andreas Wahner	KFA Jülich	Germany
Mail Reviewers		
Vyacheslav Khattatov	Central Aerological Observatory	USSR
Michael J. Prather	NASA Goddard Institute for Space Studies	US
Frode Stordal	Norwegian Institute for Air Research	Norway

EDITORS

Daniel A. Albritton	Co-Chair - NOAA	US
Robert T. Watson	Co-Chair - NASA	US
Susan Solomon	Preprint - NOAA Aeronomy Laboratory	US
Robert F. Hampson	National Institute of Standards & Technology	US
Flo Ormond	NASA	US

EDITORIAL STAFF

Earth Science Support Office Kris Wheeler Editor: Jan Timmons Graphics: Lori Kissinger

CONFERENCE COORDINATION AND DOCUMENTATION

Rumen D. Bojkov	WMO	Switzerland
Marie-Christine Charriere	WMO	France
Flo Ormond	NASA	US
N. Plock	NOAA	US
Shelagh Varney	Meteorological Office	UK
Jeanne Waters	NOAA	US

Appendix B

List of Figures

Figure 1-1	CFC-12 observations (pptv) in the four semihemispheres
Figure 1-2	CFC-11 observations (pptv) in the four semihemispheres
Figure 1-3	CFC-113 observations (pptv) in the four semihemispheres
Figure 1-4	Carbon tetrachloride observations (pptv) in the four semihemispheres
Figure 1-5	Methyl chloroform observations (pptv) in the four semihemispheres
Figure 1-6	Northern Hemispheric, Southern Hemispheric, and global HCFC-22
	observations (pptv)
Figure 1-7	Nitrous oxide observations (ppbv) in the four semihemispheres
Figure 1-8	Methane observations (ppbv) in the four semihemispheres
Figure 1-9	The global and Southern Hemispheric CH ₄ trends from 1978-1990
Figure 1-10	Carbon monoxide observations (ppbv) in the four semihemispheres
Figure 1-11	The Southern Hemispheric CO trends from 1978-1990
Figure 2-1	TOMS daily minimum total ozone measured south of 30°S from August
	through November (1979-1991)
Figure 2-2	Correlation of October monthly mean 100-hPa temperatures and total ozone
	amounts measured above Syowa, Antarctica
Figure 2-3	The area of the south polar region with total ozone amount less than 200 DU
	as measured by TOMS on a daily basis for each of the last five years
Figure 2-4	Daily average Southern Hemisphere total ozone as measured by TOMS
Figure 2-5	Polar orthographic projections of TOMS Southern Hemisphere maps of
	October mean total ozone for each of the last 5 years
Figure 2-6a	Individual station long-term trends, by season, for 39 Northern Hemisphere
	stations, versus station latitude
Figure 2-6b	Individual station long-term trends, by season, for 39 Northern Hemisphere
	stations, versus station latitude
Figure 2-7	Regional average ozone series versus time
Figure 2-8	Ozone trends versus month obtained using the full statistical model on the
	40°-52° N latitude band series with and without the inclusion of the filter
	ozonometer data
Figure 2-9	Sliding 11-year trend determined from Dobson series for the latitude band
D 0 10	40°-52°N
Figure 2-10	A comparison of TOMS and Dobson data for northern middle latitudes
Figure 2-11	Irend obtained from TOMS total ozone data as a function of latitude and season
Figure 2-12	Contours of constant TOMS average trends for December through March over
	the period November 1978 - March 1991, versus latitude and longitude

Figure 2_{-13}	Contours of constant TOMS average trends for May through August over the	
1 Iguie 2-15	period November 1978-March 1991, versus latitude and longitude	2.22
Figure 2-14	TOMS trends in zonal mean ozone versus latitude, by season	2.23
Figure 2-15	Trend versus altitude derived from Paverne ozonesonde record	2.24
Figure 2-16	Average ozone concentration versus altitude measured over Paverne for three	
1.5	two-vear periods: 1969-70; 1979-80; 1989-90	2.25
Figure 2-17	Trends derived from the SAGE I and SAGE II measurements of the ozone	
	profile in percent per decade as a function of latitude and altitude	2.26
Figure 2-18	Comparison of ozone profile trend estimates from several measurement	
	systems, SAGE, Umkehr, and two ozonesonde stations	2.27
Figure 2-19	Rawinsonde temperature trend estimates in °C per decade as a function of altitude	2.28
Figure 2-20	Temperature trend versus altitude for 6-month summer season from April through	
	September obtained by lidar measurements above Observatoire de Haute Provence	
	in southern France	2.29
Eiguro 2 1	Variation over a state of the strate of the	
riguie 5-1	the period 1070-80	38
Figure 2.7	Long term records of the zerosol column from 15 to 20 km at L aramie. Wyoming	3 10
Figure 3.3	Pecords of 1.0 um optical depth measured by SAM II in the Antarctic and	
riguie 3-3	Arctic and by SAGE I and SAGE II in the Southern and Northern Hemispheres	3 10
Figure 3.4	Actic and by SAOL 1 and SAOL 1 in the Southern and Normalin remispheres	
Tigue J-4	1 um measured by SAGE II from mid-September to mid-October in 1990 and 1991	3.11
Figure 3-5	Sulfate aerosol surface area (um^2cm^3) derived from SAGE II data for	
1 iguie 5-5.	January-March 1989	3.12
Eiguro A 1	The charged variation of CIO and O_{1} across the edge of the Anterestic or one	
rigute 4-1	hole on September 16, 1987	44
Figure 1 2	Comparison between the observed disappearance of Ω_{-} over the 4-week period	
rigule 4-2	of the AAOE mission and the calculated amount of ozone removed based on	
	of the AAOE mission and the calculated amount of ozone removed, based on	15
Elevera 4 2	Simultaneous observed concentrations of CTO and BTO for two catalytic cycles	4.J
Figure 4-5	fear-to-year variations of the mean ozone observed in the southern poral region	4.6
E'	Ior October	4.0
Figure 4-4	Comparison of Antarcuc and Arcuc <i>in suu</i> data taken during the AAOE in 1987	16
Figure 4 5	and the AASE III 1969	4.0
Figure 4-5	A ASE at three potential temperatures	17
Eiguro 4 6	The potential vorticity (DV) map at the 475 K potential temperature surface for	
rigute 4-0	The potential volucity (F v) map at the 4/3 K potential temperature sufface for Eab. 20, 1080, from the European Center for Medium Dange Weather Ecrosoft	
	(ECMWE) analysis model run at the T63 resolution	1 10
Figure 4 7	(ECIVITY F) dialysis model run at the 103 resolution	4.10
rigure 4-7	A schematic magram of the circulation and mixing associated with the generic	A 11
	рона уонск	4.11

Figure 4-8	Measurements of trace gases from the NASA ER-2 aircraft versus longitude,
Figure 4.0	Comparisons between the observed C10 mining ratios (rate) in Estimated to 200
I Igult 4-9	with the results of model calculations that contain and phase chamistry and
	those that contain currently known heterogeneous chemistry on sulfate aerosols
Figure 5 1	Ozona increased per NO molecule as a function of NO 1.
Figure 5.2	Use the set NO_x indicates a function of NO_x levels
1 igut 5-2	from the same latitudes
Figure 5-3a	Global average height profiles of Ω_{2} increases for doubled NO surface emission 5.11
Figure 5-3b	Global average height profiles of O_2 increases for CH, emission 5.11
Figure 5-3c	Global average height profiles of O_3 increases for increased emission from
Figure 5_Aa	Height profiles for ozono ingrocess at 40% lotitude and 40% little in S. T.
I iguic 5-4a	and August for doubled NO, surface emission
Figure 5-4b	Height profiles for ozone increases at 40° N latitude and 40° S latitude for
1.6410.0	February and August for doubled CH, emission
Figure 5-5	Calculated changes in average global mean concentration of CH, as a function
0	of changes in fluxes
Figure 5-6	Height profile for the calculated and observed decadel ozone increases
•	over the last 20 years at northern mid-latitudes (40°-50°)
Figure 5-7	Degradation scheme for HFC/HCFC initiated by the reactions with OH and O(1D) 516
Figure 5-8	Example of oxidation scheme for HFC/HCFC oxidation products (aldehydes)
Figure 6-1	Cumulative probability distribution functions estimated for the CLPs of
	HCFCs 22, 123, and 141b
Figure 6-2	Model calculations of the local chlorine release in mid-latitudes for
	HCFC-22 in winter
Figure 6-3	Cumulative probability distribution functions estimated for the ODPs of
	HCFCs 22, 123, and 141b6.16
Figure 6-4	ODPs for several representative compounds as a function of time horizon based
	upon best estimate CLPs of this assessment and the semi-empirical ODP/CLPs
Figure 7-1	Changes in the vertical profile of water vapor due to 30 and 100 percent increase,
	respectively, in methane, as obtained by Model V7.8
Figure 7-2	Radiative forcing due to $CO_2+CH_4+N_2O$, CFCs only, and that due to lower
	stratospheric ozone losses (see 7.5.1) at various locations and times of the year
	listed in Table 7-6
Figure 7-3	Mode A January and July radiative forcing as obtained by Model I for the 1979
	to 1990 increases in all the non-ozone gases
Figure 7-4	Same as Figure 7-3, except as obtained by Model IV7.16

Figure 7-5	Mode B January and July radiative forcings due to non-ozone gas increases and	
	ozone losses as obtained by Model I	7.17
Figure 7-6	Mode B January and July radiative forcings due to non-ozone gas increases and	
	ozone losses as obtained by Model III	7.18
Figure 7-7	Temperature change at ~40°N for January conditions	7.20
Figure 7-8	Ratio of the Mode B ozone forcing	7.21
Figure 7-9	Radiative forcing due to increases in tropospheric ozone as obtained from Model I	7.25
Figure 8-1a	Column ozone abundances (Dobson units) circa 1980 from observations (TOMS)	
Figure 8 1h	Column ozone abundances (Dobson units) circa 1980 from observations (TOMS)	
Figure 8-10	and models	8.17
Eigura 9 1c	Column ozone abundances (Dobson units) circa 1980 from observations (TOMS)	
rigue o-ic	and models	8.18
Figure 8-20	Ozone profiles (ppmy mixing ratio) circa 1980 from observations (SBUV)	
I iguie 0-2a	and models	8.20
Figure 8-2h	Ozone profiles (ppmy mixing ratio) circa 1980 from observations (SBUV)	
I iguie 0-20	and models	8.21
Figure 8-2c	Ozone profiles (ppmy mixing ratio) circa 1980 from observations (SBUV)	
i iguie o ze	and models	8.22
Figure 8-3a	Change in column ozone abundances (percent) from 1980 to 1990 based on	
I Iguie o Su	observations (TOMS) and models	8.23
Figure 8-3h	Change in column ozone abundances (percent) from 1980 to 1990 based on	
I Iguie o 50	observations (TOMS) and models	8.24
Figure 8-3c	Change in column ozone abundances (percent) from 1980 to 1990 based on	
I Iguie o se	observations (TOMS) and models	8.25
Figure 8-3d	Change in column ozone abundances (percent) from 1980 to 1990 based on	
Tigure 0 50	observations (TOMS) and models	8.26
Figure 8-3e	Change in column ozone abundances (percent) from 1980 to 1990 based on	
Tiguie o se	observations (TOMS) and models	8.27
Figure 8-4a	Change in ozone profiles (percent) from 1980 to 1990 from models	8.29
Figure 8-4h	Change in ozone profiles (percent) from 1980 to 1990 from models	8.30
Figure 8-4c	Change in ozone profiles (percent) from 1980 to 1990 from models	8.31
Figure 8.4d	Change in ozone profiles (percent) from 1980 to 1990 from models	8.32
Figure 8-52	Chlorine loading for the basic scenarios (see Table 8-5)	
Figure 8-5h	Bromine loading for the basic scenarios (see Table 8-5)	
Figure 8 6	Chlorine levels at mid-latitudes (40-50N) in March	8 34
Figure 9 7	Chlorine and bromine levels at 40-50N in March form the AFR and GSFC models	8 34
Figure 8-80	Ozone changes (percent) at 40 km, 45N in March from AFR and GSFC for	
riguie o-oa	Scenario A using GAS and HFT models	8 35

Figure 8-8b	Ozone changes (percent) at 20 km, 45N in March from AER and GSFC for	
	scenario A using GAS and HET models	8.35
Figure 8-8c	Ozone column change (percent) at 45N in March from AER and GSFC for GAS	
	and HET models	8.35
Figure 8-8d	Ozone column change (percent) annually averaged Northern Hemisphere, from	
	AER and GSFC for GAS and HET models	8.35
Figure 8-9a	Change in column ozone abundances (percent) from 1980 to 2000 based on	
	modeled Scenario A	8.37
Figure 8-9b	Change in column ozone abundances (percent) from 1980 to 2000 based on	
	modeled Scenario A	8.38
Figure 8-9c	Change in column ozone abundances (percent) from 1980 to 2000 based on	
	modeled Scenario A	8.39
Figure 8-9d	Change in column ozone abundances (percent) from 1980 to 2000 based on	
	modeled Scenario A	8.40
Figure 8-10	Difference in column ozone (percent) between Scenario A, B, and C at 2020 from	
	the AER and GSFC Models	8.42
Figure 8-11a	Change in column ozone abundances (percent) from 1980 to 2050 based on	
	modeled Scenario A	8.43
Figure 8-11b	Change in column ozone abundances (percent) from 1980 to 2050 based on	
	modeled Scenario A	8.44
Figure 8-11c	Change in column ozone abundances (percent) from 1980 to 2050 based on	
	modeled Scenario A	8.45
Figure 9-1	Fractional distribution of fuel use as a function of latitude band for 1987	
	commercial jet air traffic and projected 2015 HSCT aircraft	9.6
Figure 9-2	Observed distribution of NO from quasi-meridional flights close to the east coast	
	of North America and to the west coast of Europe	9.8
Figure 9-3	Calculated percent changes in the column abundances of O_3 as functions of	
	latitude and season for a fleet of Mac 2.4 supersonic aircraft with $EI(NO_x)=15$	9.11
Figure 9-4	Calculated percent changes in the local concentration of O_3 as functions of	
	latitude and height for a fleet of Mach 2.4 supersonic aircraft with $EI(NO_x)=15$	9.12
Figure 9-5	Percent changes in column abundance of O_3 calculated with the reaction	
	$N_2O_5+H_2O$ (aerosol) \rightarrow 2HNO ₃ included	9.13
Figure 10-1	Local plume time variations in ozone due to rocket exhausts	10.7
Figure 10-2	Latitude by altitude contours of the perturbation to background Cl. levels (noty)	10.7
-	for the GSFC model	10.0
Figure 10-3	Perturbation in ozone (percent) corresponding to Figure 10-2 in January and July	10.9

Figure 11-1	Ratio of daily surface solar radiation for 15-km visual range (typical Northern	
	Hemisphere) to that for 95-km visual range (clean air) as a function of	
	wavelength, for assumed aerosol boundary layer heights of 1 and 2 km	11.3
Figure 11-2	Trends by month of the year in the Robertson-Berger (RB) meter data set for	
-	Bismarck U.S., derived for the period 1974-1985	11.4
Figure 11-3	Long-term tendency of the residuals from the long-term means of the ratios	
-	UVB/G, measured at Jungfraujoch observatory between 1981 and 1990	11.4
Figure 11-4	Spectra of ultraviolet solar irradiance measured at local noon from Palmer	
-	Station, Antarctica, in 1988	11.5
Figure 11-5	Ratios of noontime solar irradiance at 306.5 nm to that at 350.0 nm (points)	
-	for the Austral spring of 1990 at Palmer Station	11.6
Figure 11-6	Comparison of solar UVB radiation (285 to 315nm) and ozone at Melbourne,	
-	Australia (38°S), during the instrusion of ozone-poor air in December 1987	
	and January 1988	11.8
Figure 11-7a	Typical noon spectra of UV irradiance at mid-latitudes for summer and winter,	
-	showing the erythemal action spectrum used in the calculations that follow	11.9
Figure 11-7b	Corresponding erythemally-weighted irradiances	11.9
Figure 11-8	Relationship between erythemal UV (EUV) measured at SZA=60°, and ozone	
-	(and cloud) measured at the same site (a) ozone measured by Dobson, (b) ozone	
	measured by TOMS	11.10
Figure 11-9	RAFs as functions of solar zenith angle, deduced from measurements of	
-	erythemally weighted UV irradiance and total ozone	11.11
Figure 11-10	Latitudinal and monthly distribution of daytime integrated erythemal irradiance	
	in kilojoules per square meter of horizontal area based on TOMS zonally	
	averaged column ozone measurements from 1980	11.12
Figure 11-11	Percentage changes in daytime integrated erythemal irradiance as functions of	
-	latitude and month based on column ozone changes measured by the TOMS	
	instrument from 1980 to 1990	11.13
Figure 11-12	Percentage change in annually integrated erythemal irradiance between 1980	
-	and 1990 as a function of latitude	11.13

Appendix C

List of Tables

Table 1-1	Updated global trends and tropospheric concentrations of source gases for 1989	1.4
Table 1-2	The global N ₂ O budget, Tg $(10^{12}g)$ (N ₂ O) per year	1.18
Table 1-3	Global and regional CH ₄ trends	1.20
Table 1-4	The global CH ₄ budget (Tg [CH ₄] per year)	1.24
Table 1-5	The global CO budget, Tg per year	1.29
Table 2-1	Long-term trends derived from ground-based total ozone data for individual	
	stations	2.11
Table 2-2	Regional and zonal long-term ozone trends	2.12
Table 2-3	A comparison of TOMS ozone trends with short-term trends	2.19
Table 3-1	Reaction probabilities (γ) on PSC-like surfaces	3.4
Table 3-2	Reaction probabilities (γ) on sulfuric acid/water surfaces	3.5
Table 3-3	Mass accommodation coefficients (α) on ice and sulfuric acid/water surfaces	3.6
Table 5-1	Estimated emission of NO _x	5.10
Table 5-2	Calculated average global changes in tropospheric ozone (percent) due to	
	the increased emission of ozone precursors given in Table 5-1	5.11
Table 5-3	Efficiencies of the source gas emissions in producing tropospheric ozone	5.12
Table 5-4	OH changes (percent)	5.13
Table 5-5	Calculation of the efficiency of ozone formation from increased emissions	
	of NO_x and CH_4	5.14
Table 5-6	Model ozone predictions with "business-as-usual" increases in CH_4 , CO, and NO, 1985-2040	
	1965-2040	5.15
Table 6-1	Spectroscopic and chemical rate data used in the ODP calculations at LLNL	6.5
Table 6-2	Lifetimes and chlorine loading potentials	6.7
Table 6-3	Derived ODPs scaled to UNEP-standardized lifetimes and the model-derived	
	ODP/CLP ratio from the two-dimensional models for each of the compounds	
	examined	6.10
Table 6-4	Semi-empirical ODPs for chlorine compounds	6.12
Table 6-5	Range of modeled and semi-empirical steady-state ODPs and recommended	
	best estimates	6.15
Table 7-1	Radiative transfer models employed in this study	7.3

TABLES

Table 7-2	Direct global warming potentials of several well-mixed trace gases relative to CO2	7.6
Table 7-3	Ratio of the Mode A radiative forcings due to an increase in the concentration of a	
	trace gas, as computed for the atmospheric profiles in the years 2020 and 1990	7.7
Table 7-4	Clear-sky Mode A radiative forcing (W/m ²) due to the increase in the non-ozone	
	trace gases between 1979 and 1990	7.10
Table 7-5	Partitioning of the Mode A radiative forcing (W/m ²) between surface and	
	troposphere	7.10
Table 7-6	Cases selected for analyzing the radiative forcing arising due to ozone depletion	
	in clear skies, based on the TOMS data	7.11
Table 7-7	Radiative forcings (W/m ²) due to the non-ozone trace gas increases, CFC-only	
	increases, and that due to ozone decreases for each of the cases cited in Table 7-6	7.11
Table 7-8	Summary of the sensitivity tests performed using Model II to explore the	
	dependence of the ozone-induced forcing (W/m ²)	7.13
Table 7-9	Globally and annually averaged radiative forcing (W/m ²) of the surface-	
	troposphere system due to changes in the concentrations of the trace gases	
	between 1979 and 1990	7.19
Table 7-10	Mode A and Mode B surface and troposphere ozone forcing (W/m^2) in different	
	latitude belts, as obtained by Model I	7.22
Table 8-A	Approximate ranges of column ozone losses (percent) for 1980-1990	8.1
Table 8-B	Scenarios for reducing chlorine and bromine emissions	8.3
Table 8-1	Stratospheric lifetimes and halocarbons scenarios	8.7
Table 8-2	Lifetimes for tropospheric loss	8.8
Table 8-3	Historical record (1970-1990) and projections	8.9
Table 8-4	Production factors for baseline to approximate the Montreal Protocol	8.11
Table 8-5	Basic halocarbon scenarios	8.11
Table 8-6a	Trace gas scenarios: time-dependent	8.12
Table 8-6b	Trace gas scenarios: steady state	8.12
Table 8-7	Tropospheric chlorine and bromine loading	8.13
Table 8-8	Heterogeneous chemistry on the sulfate layer: aerosol surface area (10 ⁻⁸ cm ² cm ⁻³)	8.13
Table 8-9a	Participating two-dimensional stratospheric chemistry models	8.15
Table 8-9b	Chemical model calculations	8.15
Table 9-1	Emission index (grams per kilograms of fuel used) of various materials for	
	subsonic and supersonic aircraft for cruise condition	9.4
Table 9-2	Estimates of percentage of fuel burn in the stratosphere for the subsonic fleet	9.7
Table 9-3	Calculated percent decrease in annual average of global O ₃ content	9.13
Table 10-1	Examples of launchers, chemical propulsion systems, and major exhaust	
	products (from Table 1 of AIAA, 1991)	10.4
Table 10-2	Emission scenarios used by Karol et al. (1991)	10.5

4

APPENDIX D

Major Acronyms and Abbreviations

AAOE	Airborne Antarctic Ozone Experiment
AASE	Airborne Arctic Stratospheric Expedition
AER	Atmospheric and Environmental Research, Inc.
AERE	Atomic Energy Research Establishment (UK)
AFCRL	Air Force Cambridge Research Laboratories
AFEAS	Alternative Fluorocarbon Environmental Acceptability Study
AFGL	Air Force Geophysical Laboratory
AGU	American Geophysical Union
AIAA	American Institute of Aeronautics and Astronautics, Inc.
ALE/GAGE	Atmospheric Lifetime Experiment-Global Atmospheric Gases Experiment
AMAP	Association for Meteorology and Atmospheric Physics
ARC	Ames Research Center (NASA)
ATMOS	Atmospheric Trace Molecule Spectroscopy
AVHRR	Advanced Very High Resolution Radiometer
BaU	Business as Usual
BLP	Bromine Loading Potential
BOIC	Balloon Ozone Intercomparison Campaign
BUV	Backscatter Ultraviolet Spectrometer
CAMED-P	University of Cambridge and University of Edinburgh
CCN	Cloud Condensation Nuclei
CFC	Chlorofluorocarbon
CFM	Chlorofluoromethane
CHEOPS	CHemistry of Ozone in the Polar Stratosphere
CIMO	Commission on Instrument and Method of Observation
CIRA	COSPAR International Reference Atmosphere
CLP	Chlorine Loading Potential
CMA	Chemical Manufacturers Association
CMDL	Climate Monitoring and Diagnostics Laboratory (NOAA, U.S.)
CMRN	Cooperative Meteorological Rocketsonde Network
CNRS	Centre National de la Recherche Scientifique (France)
COSPAR	Committee on Space Research
CPOZ	Compressed Profile Ozone
CSIR	Council for Scientific and Industrial Research Organization (South Africa)
CSIRO	Commonwealth Scientific and Industrial Research Organization (Australia)
DCA	Detector capsule assembly
DU	Dobson Unit

ACRONYMS

ECC	Electrochemical cell (ozonesonde)
ECMWF	European Center for Medium-Range Weather Forecasts
EGA	Emissivity growth approximation
EI	Emission Index
EMR	Electromagnetic radiation
ENSO	El Niño-Southern Oscillation
EOS	Earth Observing System
ERBS	Earth Radiation Budget Satellite
FRI	Environmental Research Laboratory (NOAA)
FSΔ	Furonean Snace Agency
FIIV	Envithemal IIV
FDH	Fixed Dynamical Heating
FGGE	First GARP Global Experiment
FIAER	Fraunhofer Institute for Atmospheric Environmental Research (Germany)
FOV	Field of view
101	
GAGE	Global Atmospheric Gases Experiment
GARP	Global Atmospheric Research Program
GFDL	Geophysical Fluid Dynamics Laboratory
GHRS	Goddard High Resolution Spectrograph
GIT	Georgia Institute of Technology (United States)
GMCC	Geophysical Monitoring for Global Change (NOAA)
GMCC	Greenwich Mean Time
CSEC	Goddard Space Flight Center (NASA)
CMP	Clobal Warming Potential
GWI	Global Walling I olertaal
HCFC	Hydrochlorofluorocarbon
HFC	Hydrofluorocarbon
HIRS	High Resolution Infrared Radiation Sounder
hPa	hectoPascal
HSCT	High Speed Civil Transports
HSRP	High Speed Research Program
110101	man opeca neocarci i rog-ani
IAGA/IAMAP	International Association for Geomagnetism and Aeronomy/International
	Association for Meteorology and Atmospheric Physics
ICAO	International Civil Aviation Organization
ICSU	International Council of Scientific Unions
IEC	Inflight calibrator
IFOV	Instrument field of view
IGY	International Geophysical Year
INIPE	Brazilian space agency
IOC	International Ozone Commission
IPCC	Intergovernmental Panel on Climate Change
	Isontronic notential vorticity
	Infrared
11	minaicu

Jet Propulsion Laboratory
LIMS Map Archival Tapes Langley Research Center (NASA) Laboratory for Atmospheric and Space Physics (University of Colorado) Limb Infrared Monitor of the Stratosphere Lawrence Livermore National Laboratory Limb Radiance Inversion Radiometer Local Thermodynamic Equilibrium
Middle Atmosphere Program Mid-Latitude Summer Max Planck Institute for Aeronomy (Germany) Meteorological Research Institute (Japan) Microwave Sounding Unit
National Aeronautics and Space Administration National Aerospace Plane National Bureau of Standards (now NIST) National Center for Atmospheric Research (U.S.) Network for the Detection of Stratospheric Change National Environmental Satellite Data and Information Service Norsk Institute for Luftforskning (Oslo) Near infrared National Institute of Standards and Technology (formerly NBS) (U.S.) National Meteorological Center Non-methane hydrocarbons National Oceanic and Atmospheric Administration National Oceanic and Atmospheric Administration/Aeronomy Laboratory National Oceanic and Atmospheric Administration National Oceanic and Atmospheric Administration National Oceanic and Atmospheric Administration National Oceanic Laboratory National Ozone Expedition National Physical Laboratory (United Kingdom) National Research Council Naval Research Laboratory National Space Science Data Center
Official Airline Guide Ozone Depletion Potential Ozone Data for the World Organization for Economic Cooperation and Development (Paris, France) Oregon Graduate Center (now OGIST) (U.S.) Oregon Graduate Institute for Science and Technology Orbiting Geophysical Observatory Ozone Processing Team Ozone Trends Panel

ACRONYMS

PAN	Peroxyacetyl nitrate			
PMR	Pressure Modulated Radiometer			
PMT	Photomultiplier tube			
PNW	Pacific North West region of the United States			
PPN	Peroxypropionyl nitrate			
PSCs	Polar Stratrospheric Clouds			
PV	Potential Vorticity			
QBO	Quasi-Biennial Oscillation			
RAF	Radiative Amplification Factor			
RAOB	Rawinsonde Observation			
RB	Robertson-Berger Network			
ROCOZ	Rocket Ozonesonde			
SAGE	Stratospheric Aerosol and Gas Experiment			
SAM II	Stratospheric Aerosol Measurement			
SAMS	Stratospheric and Mesospheric Sounder			
SAO	Smithsonian Astrophysical Observatory (Cambridge, MA)			
SBUV	Solar Backscatter Ultraviolet Spectrometer			
SCOSTEP	Scientific Committee on Solar Terrestrial Physics			
SCR	Selective Chopper Radiometer			
SIO	Scripps Institution for Oceanography			
SIRIS	Stratospheric InfraRed Interferometer Spectrometer			
SME	Solar Mesosphere Explorer			
SMM	Solar Maximum Mission			
SOI	Southern Oscillation Index			
SPEs	Solar Proton Events			
SSU	Stratospheric Sounding Unit			
SZAs	Solar Zenith Angles			
тип	Tomporature Humidity Infrared Radiometer			
	Television and Infrared Observation Satellite			
TOME	Tetel Ozona Manning Sportrameter			
TOMS	TIPOS Operational Vertical Soundar			
1075	TIKOS Operational vertical Sounder			
UADP	Upper Atmosphere Data Program			
UARS	Upper Atmosphere Research Satellite			
UCI	University of California at Irvine (United States)			
UEA	University of East Anglia (United Kingdom)			
UKMO	United Kingdom Meteorological Office			
UNEP	United Nations Environment Program			
UT	University of Tokyo (Japan)			
UV	Ultraviolet			
UVB	Ultraviolet-B			

ACRONYMS

UVS UVSP	Ultraviolet Spectrometer Ultraviolet Spectrometer and Polarimeter	
VTPR	Vertical Temperature Profile Radiometer	
WMO WODC	World Meteorological Organization World Ozone Data Center	

Appendix E

Chemical Formulae and Nomenclature

Symbol	Name	Symbol	Name
0	Atomic oxygen	CH ₂ O	Formaldehyde
O ₂	Molecular oxygen	CH₃CHO	Acetaldehyde
O ₃	Ozone	(CH ₃) ₂ CO	Acetone
O _x	Odd oxygen (O, O(1 D), O ₃)	CH ₃ O ₂ H	Methyl hydroperoxide
N ₂	Molecular nitrogen	CH ₂ CHCHO	Acrolein
N ₂ O	Nitrous oxide	C_2Cl_4	Tetrachloroethylene
NO	Nitric oxide	CH ₃ Cl	Methyl chloride
NO ₂	Nitrogen dioxide	CH ₂ Cl ₂	Dichloromethane
NO ₃	Nitrogen trioxide, nitrate	CHCl ₃	Chloroform, trichloromethane
	radical	CFC	Chlorofluorocarbon
NOy	Odd nitrogen (NO, NO ₂ , NO ₃ ,	НС	Hydrocarbon
	N ₂ O ₅ , CIONO ₂ , HNO ₄ ,	NMHC	Nonmethane hydrocarbons
	HNO ₃)	PAN	Peroxyacetylnitrate
NO _x	Oxides of nitrogen (NO, NO ₂ ,	CH ₃ CCl ₃	Methyl chloroform
	NO ₃)	C_2F_6	Hexafluoroethane
N_2O_5	Dinitrogen pentoxide	CCl ₄	Carbon tetrachloride
HNO ₂ , HONO	Nitrous acid	CCl₃F	Trichlorofluoromethane
HNO ₃ , HONO ₂	Nitric acid		(CFC-11)
HNO ₄ , HO ₂ NO ₂	Peroxynitric acid	CCl_2F_2	Dichlorodifluoromethane
NH ₃	Ammonia		(CFC-12)
H ₂ O	Water vapor	CCIF ₃	Chlorotrifluoromethane
H ₂ O ₂	Hydrogen peroxide		(CFC-13)
OH, HO	Hydroxyl radical	CF₄	Tetrafluoromethane
HO ₂	Hydroperoxyl radical	CHCl ₂ F	Dichlorofluoromethane (HCFC-21)
HO _x	Odd hydrogen (OH, HO ₂ ,	CHClF ₂	Chlorodifluoromethane
	H ₂ O ₂)		(HCFC-22)
CO	Carbon monoxide	CCl ₂ FCClF ₂	Trichlorotrifluoroethane
CO ₂	Carbon dioxide		(CFC-113)
CS ₂	Carbon disulfide	CCIF ₂ CCIF ₂	Dichlorotetrafluoroethane
COS, OCS	Carbonyl sulfide	-	(CFC-114)

CHEMICAL FORMULAE AND NOMENCLATURE

SO ₂	Sulfur dioxide	CCIF ₂ CF ₃	Chloropentafluoroethane
SF ₆	Sulfur hexafluoride		(CFC-115)
H ₂ SO ₄	Sulfuric acid	CF ₃ CF ₃	Hexafluoroethane
HF	Hydrogen fluoride	CH ₃ CN	Methyl cyanide
HC1	Hydrogen chloride	CH ₃ I	Methyl iodide
HCN	Hydrogen cyanide	Br	Bromine atom
HOCI	Hypochlorous acid	BrO	Bromine monoxide
Cl	Chlorine atom	Br _x	Odd bromine, inorganic
CIO	Chlorine monoxide		bromine
CIONO ₂ , CINO ₃	Chlorine nitrate	CBrF ₃	Trifluorobromomethane
Cl _x	Odd chlorine, inorganic	CHBr ₃	Bromoform, tribromomethane
	chlorine	CH₃Br	Methyl bromide
CH ₄	Methane	CH_2Br_2	Dibromomethane
C ₂ H ₆	Ethane	CHBr ₂ Cl	Dibromochloromethane
C ₃ H ₈	Propane	$C_2H_4Br_2$	Dibromoethane
C_2H_4	Ethylene	CBrClF ₂	Halon 1211
C_2H_2	Acetylene	CF ₃ Br	Halon 1301