Soden, B., S. Tjemkes, J. Schmetz, R. Saunders, J. Bates, B. Ellingson, R. Engelen, L. Garand, D. Jackson, G. Jedlovec, T. Kleespies, D. Randel, P. Rayer, E. Salathe, D. Schwarzkopf, N. Scott, B. Sohn, S. de Souza-Machado, L. Strow, D. Tobin, D. Turner, P. van Delst, and T. Wehr, 2000: An intercomparison of radiation codes for retrieving upper tropospheric humidity in the 6.3-micron band: A report from the First GVaP Workshop. Bull. Amer. Met. Soc., 81, 797-808.


ABSTRACT

An intercomparison of radiation codes used in retrieving upper-tropospheric humidity (UTH) from observations in the ν2 (6.3 µm) water vapor absorption band was performed. This intercomparison is one part of a coordinated effort within the Global Energy and Water Cycle Experiment Water Vapor Project to assess our ability to monitor the distribution and variations of upper-tropospheric moisture from spaceborne sensors. A total of 23 different codes, ranging from detailed line-by-line (LBL) models, to coarser-resolution narrowband (NB) models, to highly parameterized single-band (SB) models participated in the study. Forward calculations were performed using a carefully selected set of temperature and moisture profiles chosen to be representative of a wide range of atmospheric conditions. The LBL model calculations exhibited the greatest consistency with each other, typically agreeing to within 0.5 K in terms of the equivalent blackbody brightness temperature (Tb). The majority of NB and SB models agreed to within ±1 K of the LBL models, although a few older models exhibited systematic Tb biases in excess of 2 K. A discussion of the discrepancies between various models, their association with differences in model physics (e.g., continuum absorption), and their implications for UTH retrieval and radiance assimilation is presented.